
APEXC�½�ç½çÝ II
Version 2.0

Authors
Gregory Hartman, Ph.D.
Department of Applied MathemaƟcs

Virginia Military InsƟtute

Brian Heinold, Ph.D.
Department of MathemaƟcs and Computer Science

Mount Saint Mary’s University

Troy Siemers, Ph.D.
Department of Applied MathemaƟcs

Virginia Military InsƟtute

Dimplekumar Chalishajar, Ph.D.
Department of Applied MathemaƟcs

Virginia Military InsƟtute

Editor
Jennifer Bowen, Ph.D.

Department of MathemaƟcs and Computer Science

The College of Wooster



Copyright © 2014 Gregory Hartman
Licensed to the public under CreaƟve Commons
AƩribuƟon-Noncommercial 3.0 United States License



PÙ�¥���
A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay beƩer understand what you will find beyond this
page.

This text is Part II of a three–text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivaƟves, and the basics of
integraƟon, found in Chapters 1 through 6.1. The second text covers material
oŌen taught in “Calc 2:” integraƟon and its applicaƟons, along with an introduc-
Ɵon to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “mulƟvariable calc:” para-
metric equaƟons, polar coordinates, vector–valued funcƟons, and funcƟons of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www.vmi.edu/APEX. These three texts are intended to
work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

PrinƟng the enƟre text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$10 at Amazon.com.

A result of this spliƫng is that someƟmes a concept is said to be explored in
an “earlier/later secƟon,” though that secƟon does not actually appear in this
parƟcular text. Also, the index makes reference to topics, and page numbers,
that do not appear in this text. This is done intenƟonally to show the reader
what topics are available for study. Downloading the .pdf of APEX Calculus will
ensure that you have all the content.

APEX – Affordable Print and Electronic teXts

APEX is a consorƟum of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wriƟng paradigm is facing a poten-
Ɵal revoluƟon as desktop publishing and electronic formats increase in popular-
ity. However, wriƟng a good textbook is no easy task, as the Ɵme requirements
alone are substanƟal. It takes countless hours of work to produce text, write

http://www.vmi.edu/APEX
http://amazon.com


examples and exercises, edit and publish. Through collaboraƟon, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is enƟrely free; someone always bears some cost. This
text “cost” the authors of this book their Ɵme, and that was not enough. APEX
Calculus would not exist had not the Virginia Military InsƟtute, through a gen-
erous Jackson–Hope grant, given one of the authors significant Ɵme away from
teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a CreaƟve Commons At-
tribuƟon - Noncommercial 3.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the laƩer, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add secƟons that are “missing” or remove secƟons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
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5: IÄã�¦Ù�ã®ÊÄ

We have spent considerable Ɵme considering the derivaƟves of a funcƟon and
their applicaƟons. In the following chapters, we are going to starƟng thinking
in “the other direcƟon.” That is, given a funcƟon f(x), we are going to consider
funcƟons F(x) such that F′(x) = f(x).

5.1 AnƟderivaƟves and Indefinite IntegraƟon

Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x,
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = 2x.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies
the given equaƟon. Take a moment and consider that equaƟon; can you find a
funcƟon y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = x2. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = x2 + 1 also has a derivaƟve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = x2 + 123, 456, 789 also has a deriva-
Ɵve of 2x. The differenƟal equaƟon y ′ = 2x has many soluƟons. This leads us
to some definiƟons.

.

.

.
DefiniƟon 19 AnƟderivaƟves and Indefinite Integrals

Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

The set of all anƟderivaƟves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.



Chapter 5 IntegraƟon

Make a note about our definiƟon: we refer to an anƟderivaƟve of f, as op-
posed to the anƟderivaƟve of f, since there is always an infinite number of them.
We oŌen use upper-case leƩers to denote anƟderivaƟves.

Knowing one anƟderivaƟve of f allows us to find infinitely more, simply by
adding a constant. Not only does this give usmore anƟderivaƟves, it gives us all
of them.

.

.

.
Theorem 34 AnƟderivaƟve Forms

Let F(x) and G(x) be anƟderivaƟves of f(x). Then there exists a constant
C such that

G(x) = F(x) + C.

Given a funcƟon f and one of its anƟderivaƟves F, we know all anƟderivaƟves
of f have the form F(x)+ C for some constant C. Using DefiniƟon 19, we can say
that ∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure 5.1: Understanding the indefinite integral notaƟon.

Figure 5.1 shows the typical notaƟon of the indefinite integral. The integra-
Ɵon symbol,

∫
, is in reality an “elongated S,” represenƟng “take the sum.” We

will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
∫

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

∫
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

.. Example 107 EvaluaƟng indefinite integrals

Evaluate
∫

sin x dx.

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thoughtwill lead us to one soluƟon: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integraƟon.
So: ∫

sin x dx = − cos x+ C...

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ∫

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

.. Example 108 ..EvaluaƟng indefinite integrals

Evaluate
∫
(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is 3x2 + 4x + 5.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

Notes:

187
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What funcƟons have a derivaƟve of 4x? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what funcƟons have a derivaƟve of 5? FuncƟons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivaƟve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5. ...

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.

Theorem24gave a list of the derivaƟves of common funcƟonswehad learned
at that point. We restate part of that list here to stress the relaƟonship between
derivaƟves and anƟderivaƟves. This list will also be useful as a glossary of com-
mon anƟderivaƟves as we learn.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

.

.

.
Theorem 35 DerivaƟves and AnƟderivaƟves

Common DifferenƟaƟon Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 35:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mulƟplied by

Notes:
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Chapter 5 IntegraƟon

5, but “5 Ɵmes a constant” is sƟll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
108. So: ∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

1. NoƟce the restricƟon that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of

differenƟaƟon. Here is a useful quote to remember:
“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract 1 from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

IniƟal Value Problems

In SecƟon 2.3 we saw that the derivaƟve of a posiƟon funcƟon gave a veloc-
ity funcƟon, and the derivaƟve of a velocity funcƟon describes the acceleraƟon.
We can now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon
gives a velocity funcƟon, etc. While there is just one derivaƟve of a given func-
Ɵon, there are infinite anƟderivaƟves. Therefore we cannot ask “What is the
velocity of an object whose acceleraƟon is−32Ō/s2?”, since there is more than
one answer.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

We can find the answer if we provide more informaƟon with the quesƟon,
as done in the following example.

.. Example 109 Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −32 Ō/s2. At Ɵme t = 3,
a falling object had a velocity of −10 Ō/s. Find the equaƟon of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v′(t) = −32, and

• the velocity at a specific Ɵme, i.e., v(3) = −10.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Thus v(t) = −32t+ 86. We can use this equaƟon to understand the moƟon
of the object: when t = 0, the object had a velocity of v(0) = 86 Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleraƟon and its velocity at a single point in Ɵme. ..

.. Example 110 ..Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

Notes:
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Chapter 5 IntegraƟon

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the iniƟal value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integraƟng again.∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6. ...

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a posiƟon funcƟon given a velocity funcƟon.

In the next secƟon, we will see how posiƟon and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity funcƟon. Then,
in SecƟon 5.4, wewill see howareas and anƟderivaƟves are closely Ɵed together.

Notes:
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Exercises 5.1
Terms and Concepts
1. Define the term “anƟderivaƟve” in your own words.

2. Is it more accurate to refer to “the” anƟderivaƟve of f(x) or
“an” anƟderivaƟve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

5. What is an “iniƟal value problem”?

6. The derivaƟve of a posiƟon funcƟon is a func-
Ɵon.

7. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

Problems
In Exercises 8 – 26, evaluate the given indefinite integral.

8.
∫

3x3 dx

9.
∫

x8 dx

10.
∫

(10x2 − 2) dx

11.
∫

dt

12.
∫

1 ds

13.
∫

1
3t2

dt

14.
∫

3
t2

dt

15.
∫

1√
x
dx

16.
∫

sec2 θ dθ

17.
∫

sin θ dθ

18.
∫

(sec x tan x+ csc x cot x) dx

19.
∫

5eθ dθ

20.
∫

3t dt

21.
∫

5t

2
dt

22.
∫

(2t+ 3)2 dt

23.
∫

(t2 + 3)(t3 − 2t) dt

24.
∫

x2x3 dx

25.
∫

eπ dx

26.
∫

t dx

27. This problem invesƟgates why Theorem 35 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?

(b) Find d
dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?

(d) Find d
dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of anƟderiva-
Ɵves, depending on whether x > 0 or x < 0. In

one expression, give a formula for
∫

1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 28 – 38, find f(x) described by the given iniƟal
value problem.

28. f ′(x) = sin x and f(0) = 2

29. f ′(x) = 5ex and f(0) = 10

30. f ′(x) = 4x3 − 3x2 and f(−1) = 9

31. f ′(x) = sec2 x and f(π/4) = 5

32. f ′(x) = 7x and f(2) = 1

33. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

34. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10

35. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

36. f ′′(x) = sin θ and f ′(π) = 2, f(π) = 4

37. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

38. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review
39. Use informaƟon gained from the first and second deriva-

Ɵves to sketch f(x) =
1

ex + 1
.

40. Given y = x2ex cos x, find dy.
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Figure 5.3: The total displacement is the
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Chapter 5 IntegraƟon

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 Ō/s for 10 seconds. How far away from its starƟng point is the
object?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
Ɵon. In this case, Distance = 5Ō/s× 10s= 50 feet.

It is interesƟng to note that this soluƟon of 50 feet can be represented graph-
ically. Consider Figure 5.2, where the constant velocity of 5Ō/s is graphed on the
axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 Ō.

Now consider a slightly harder situaƟon (and not parƟcularly realisƟc): an
object travels in a straight line with a constant velocity of 5Ō/s for 10 seconds,
then instantly reverses course at a rate of 2Ō/s for 4 seconds. (Since the object
is traveling in the opposite direcƟon when reversing course, we say the velocity
is a constant−2Ō/s.) How far away from the starƟng point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 Ō.

Hence the object is 42 feet from its starƟng locaƟon.
We can again depict this situaƟon graphically. In Figure 5.3 we have the

velociƟes graphed as straight lines on [0, 10] and [10, 14], respecƟvely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.
Now consider a more difficult problem.

.. Example 111 ..Finding posiƟon using velocity
The velocity of an object moving straight up/down under the acceleraƟon of
gravity is given as v(t) = −32t+48, where Ɵme t is given in seconds and velocity
is in Ō/s. When t = 0, the object had a height of 0 Ō.

1. What was the iniƟal velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at Ɵme t = 2?

SÊ½çã®ÊÄ It is straighƞorward to find the iniƟal velocity; at Ɵme t = 0,
v(0) = −32 · 0+ 48 = 48 Ō/s.

Notes:
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Figure 5.4: A graph of v(t) = −32t +
48; the shaded areas help determine dis-
placement.

5.2 The Definite Integral

To answer quesƟons about the height of the object, we need to find the
object’s posiƟon funcƟon s(t). This is an iniƟal value problem, which we studied
in the previous secƟon. We are told the iniƟal height is 0, i.e., s(0) = 0. We
know s′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):∫

v(t) dt =
∫
(−32t+ 48) dt = −16t2 + 48t+ C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the criƟcal points of s by
seƫng its derivaƟve equal to 0 and solving for t:

s′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(NoƟce howwe ended just finding when the velocity was 0Ō/s!) The first deriva-
Ɵve test shows this is a maximum, so themaximum height of the object is found
at

s(1.5) = −16(1.5)2 + 48(1.5) = 36Ō.

The height at Ɵme t = 2 is now straighƞorward to compute: it is s(2) = 32Ō.

While we have answered all three quesƟons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.4 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straighƞorward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “negaƟve” area. That is, it represents the object coming back
toward its starƟng posiƟon. So to find the maximum distance from the starƟng
point – the maximum height – we find the area under the velocity line that is
above the t–axis. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48Ō/s = 36Ō.

Finally, find the total signed area under the velocity funcƟon from t = 0 to
t = 2 to find the total displacement of the object. That is,

Displacement = Area above the t–axis− Area below t–axis.

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48Ō/s)− 1

2
(.5s)(16Ō/s) = 32Ō.

...

Notes:
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Figure 5.5: A graph of f(x) in Example 112.

Chapter 5 IntegraƟon

The above example does not prove a relaƟonship between area under a ve-
locity funcƟon and displacement, but it does imply a relaƟonship exists. SecƟon
5.4 will fully establish fact that the area under a velocity funcƟon is displace-
ment.

.

.

.
DefiniƟon 20 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:

(area under f and above x–axis on [a, b]) – (area above f and under
x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a
f(x) dx,

where a and b are the bounds of integraƟon.

The previous secƟon introduced the indefinite integral, which related to an-
ƟderivaƟves. We have now defined the definite integral, which relates to areas
under a funcƟon. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in SecƟon 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notaƟon makes a bit more sense, as we
are adding up areas under the funcƟon f.

We pracƟce using this notaƟon.

.. Example 112 ..EvaluaƟng definite integrals
Consider the funcƟon f given in Figure 5.5.

Find:

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

SÊ½çã®ÊÄ

Notes:
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Figure 5.6: A graph of 5f in Example 112.
(Yes, it looks just like the graph of f in Fig-
ure 5.5, just with a different y-scale.)

5.2 The Definite Integral

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“negaƟve area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.6.
Again, the region is a triangle, with height 5 Ɵmes that of the height of
the original triangle. Thus the area is

∫ 3
0 5f(x) dx = 15/2 = 7.5.

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0....

This example illustrates some of the properƟes of the definite integral, given
here.

.

.

.
Theorem 36 ProperƟes of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

3.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief jusƟficaƟon of Theorem 36 here.

1. As demonstrated in Example 112, there is no “area under the curve”when
the region has no width; hence this definite integral is 0.

Notes:
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2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].
It is important to note that this sƟll holds true even if a < b < c is not
true. We discuss this in the next point.

3. This property can be viewed a merely a convenƟon to make other proper-
Ɵesworkwell. (Later wewill see how this property has a jusƟficaƟon all its
own, not necessarily in support of other properƟes.) Suppose b < a < c.
The discussion from the previous point clearly jusƟfies∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (5.1)

However, we sƟll claim that, as originally stated,∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (5.2)

How do EquaƟons (5.1) and (5.2) relate? Start with EquaƟon (5.1):∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (3) jusƟfies changing the sign and switching the bounds of inte-

graƟon on the −
∫ a

b
f(x) dx term; when this is done, EquaƟons (5.1) and

(5.2) are equivalent.

The conclusion is this: by adopƟng the convenƟon of Property (3), Prop-
erty (2) holds no maƩer the order of a, b and c.

4,5. Each of these may be non–intuiƟve. Property (5) states that when one
scales a funcƟon by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both ProperƟes (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Notes:
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Figure 5.7: A graph of a funcƟon in Exam-
ple 113.
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Figure 5.8: A graph of f(x) = 2x − 4 in
Example 114.

5.2 The Definite Integral

.. Example 113 EvaluaƟng definite integrals using Theorem 36.
Consider the graph of a funcƟon f(x) shown in Figure 5.7.

Answer the following:

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

SÊ½çã®ÊÄ

1.
∫ b
a f(x) dx has a posiƟve value (since the area is above the x–axis) whereas∫ c
b f(x) dx has a negaƟve value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
∫ b
c f(x)dx

represents a posiƟve number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.

..

The area definiƟon of the definite integral allows us to compute the definite
integral of some simple funcƟons.

.. Example 114 ..EvaluaƟng definite integrals using geometry
Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ

1. It is useful to sketch the funcƟon in the integrand, as shown in Figure 5.8.
We see we need to compute the areas of two regions, which we have
labeled R1 and R2. Both are triangles, so the area computaƟon is straight-
forward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Notes:
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Figure 5.11: What is the area below y =
x2 on [0, 3]? The region is not a usual ge-
ometric shape.

Chapter 5 IntegraƟon

Region R1 lies under the x–axis, hence it is counted as negaƟve area (we
can think of the height as being “−8”), so∫ 5

−2
(2x− 4) dx = 9− 16 = −7.

2. Recognize that the integrand of this definite integral is a half circle, as
sketched in Figure 5.9, with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

...

.. Example 115 Understanding moƟon given velocity
Consider the graph of a velocity funcƟon of an object moving in a straight line,
given in Figure 5.10, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity funcƟon gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its starƟng posiƟon.

SÊ½çã®ÊÄ Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15Ō/s.

At Ɵme t = 0, the displacement is 0; the object is at its starƟng posiƟon. At
Ɵme t = a, the object has moved backward 11 feet. Between Ɵmes t = a and
t = b, the object moves forward 38 feet, bringing it into a posiƟon 27 feet for-
ward of its starƟng posiƟon. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is 27 feet from its starƟng posiƟon. ..

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.11, where a region below y = x2 is shaded. What
is its area? The funcƟon y = x2 is relaƟvely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next secƟon we will explore how to find the areas of such regions.

Notes:

200



Exercises 5.2
Terms and Concepts
1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems
In Exercises 5 – 9, a graph of a funcƟon f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

5.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

.....

y = f(x)

.

1

.

2

.

3

.

4

.

5

.−2.

−1

.

1

.

2

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7.

.....

y = f(x)

. 1. 2. 3. 4.

2

.

4

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

.....

y = x − 1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx
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9.

.....

f(x) =
√

4 − (x − 2)2

. 1. 2. 3. 4.

1

.

2

.

3

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx

In Exercises 10 – 13, a graph of a funcƟon f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
Ɵon.

10.

.....

y = f(x)

.

59

.

11

.

21

.

1

.

2

.

3

.−100.

−50

.

50

.

x

.

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

11.

.....

f(x) = sin(πx/2)

.

4/π

.

4/π

.

1

.

2

.

3

.

4

.

−1

.

1

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

12.

.....

f(x) = 3x2 − 3

.

4

.

4

.

−4

.

−2

.

−1

.

1

.

2

. −5.

5

.

10

.

x

.

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

.....

f(x) = x2

. 1/3. 7/3.
1

.
2

.

1

.

2

.

3

.

4

. x.

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 14 – 15, a graph of the velocity funcƟon of an ob-
ject moving in a straight line is given. Answer the quesƟons
based on that graph.

14.

.....

1

.

2

.

3

.−1.

1

.

2

.

t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 3]?
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15.

..... 1. 2. 3. 4. 5.

1

.

2

.

3

.
t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 5]?

16. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) When does the maximum displacement occur?

(d) When will the object reach a height of 0? (Hint: find
when the displacement is−48Ō.)

17. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s iniƟal velocity?

(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its
iniƟal height?

(d) When will the object reach a height of 210 feet?

In Exercises 18 – 21, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

18.
∫ 2

0

(
f(x) + g(x)

)
dx

19.
∫ 3

0

(
f(x)− g(x)

)
dx

20.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

21. Find values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 22 – 25, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

22.
∫ 3

0

(
s(t) + r(t)

)
dt

23.
∫ 0

5

(
s(t)− r(t)

)
dt

24.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

25. Find values for a and b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 26 – 29, evaluate the given indefinite integral.

26.
∫ (

x3 − 2x2 + 7x− 9
)
dx

27.
∫ (

sin x− cos x+ sec2 x
)
dx

28.
∫ ( 3

√
t+

1
t2

+ 2t
)
dt

29.
∫ (

1
x
− csc x cot x

)
dx
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Figure 5.12: A graph of f(x) = 4x − x2.
What is the area of the shaded region?
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Figure 5.13: ApproximaƟng
∫ 4
0 (4x−x2) dx

using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter 5 IntegraƟon

5.3 Riemann Sums

In the previous secƟon we defined the definite integral of a funcƟon on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the secƟon with a region whose area was not simple to
compute. In this secƟon we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximaƟon, then refine that approximaƟon to make it beƩer, then use limits
in the refining process to find the exact answer. That is exactly what we will do
here.

Consider the region given in Figure 5.12, which is the area under y = 4x−x2
on [0, 4]. What is the signed area of this region – i.e., what is

∫ 4
0 (4x− x2) dx?

We start by approximaƟng. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approximaƟon; we are including area in the rectangle
that is not under the parabola.

We have an approximaƟon of the area, using one rectangle. How can we
refine our approximaƟon tomake it beƩer? The key to this secƟon is this answer:
use more rectangles.

Let’s use 4 rectangles of equal width of 1. This parƟƟons the interval [0, 4]
into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we will
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the LeŌ Hand Rule, the Right Hand Rule, and theMidpoint Rule. The LeŌ Hand
Rule says to evaluate the funcƟon at the leŌ–hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.13, the rectangle drawn on the
interval [2, 3] has height determined by the LeŌ Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
funcƟon at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the funcƟon at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximaƟng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4
0 (4x − x2) dx using

Notes:
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Figure 5.14: ApproximaƟng
∫ 4
0 (4x−x2) dx

using the LeŌ Hand Rule in Example 116.
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Figure 5.15: ApproximaƟng
∫ 4
0 (4x−x2) dx

using the Right Hand Rule in Example 116.
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Figure 5.16: ApproximaƟng
∫ 4
0 (4x−x2) dx

using the Midpoint Rule in Example 116.

5.3 Riemann Sums

these rules.

.. Example 116 Using the LeŌ Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ 4
0 (4x − x2) dx using the LeŌ Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SÊ½çã®ÊÄ We break the interval [0, 4] into four subintervals as before.
In Figure 5.14 we see 4 rectangles drawn on f(x) = 4x− x2 using the LeŌ Hand
Rule. (The areas of the rectangles are given in each figure.)
Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0. We
add up the areas of each rectangle (height× width) for our LeŌ Hand Rule ap-
proximaƟon:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.15 shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.
In this example, these rectangle seem to be the mirror image of those found
in Figure 5.14. (This is because of the symmetry of our shaded region.) Our
approximaƟon gives the same answer as before, though calculated a different
way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.16 shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approximaƟon of

∫ 4
0 (4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approximaƟons of
∫ 4
0 (4x− x2) dx: 10 and 11. ..

SummaƟon NotaƟon

It is hard to tell at this moment which is a beƩer approximaƟon: 10 or 11?
We can conƟnue to refine our approximaƟon by using more rectangles. The
notaƟon can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summaƟon notaƟon to ameliorate this problem.

Notes:
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Chapter 5 IntegraƟon

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
wriƟng

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summaƟon notaƟon and write

..

9∑
i=1

ai.

.i=index
of summaƟon

. lower
bound

.

upper
bound

.

summand

Figure 5.17: Understanding summaƟon notaƟon.

The upper case sigma represents the term “sum.” The index of summaƟon
in this example is i; any symbol can be used. By convenƟon, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s pracƟce using this notaƟon.

.. Example 117 ..Using summaƟon notaƟon
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the posiƟve odd integers). Evaluate
the following summaƟons:

1.
6∑

i=1

ai 2.
7∑

i=3

(3ai − 4) 3.
4∑

i=1

(ai)2

SÊ½çã®ÊÄ

1.
6∑

i=1

ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

2. Note the starƟng value is different than 1:

7∑
i=3

ai = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.

Notes:
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5.3 Riemann Sums

3.
4∑

i=1

(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84

...

It might seem odd to stress a new, concise way of wriƟng summaƟons only
to write each term out as we add them up. It is. The following theorem gives
some of the properƟes of summaƟons that allow us to work with them without
wriƟng individual terms. Examples will follow.

.

.

.
Theorem 37 ProperƟes of SummaƟons

1.
n∑

i=1

c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=1

c · ai = c ·
n∑

i=1

ai

4.
j∑

i=m

ai +
n∑

i=j+1

ai =
n∑

i=m

ai

5.
n∑

i=1

i =
n(n+ 1)

2

6.
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

7.
n∑

i=1

i3 =
(
n(n+ 1)

2

)2

.. Example 118 ..EvaluaƟng summaƟons using Theorem 37
Revisit Example 117 and, using Theorem 37, evaluate

6∑
i=1

ai =
6∑

i=1

(2i− 1).

Notes:
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Figure 5.18: Dividing [0, 4] into 16 equally
spaced subintervals.

Chapter 5 IntegraƟon

SÊ½çã®ÊÄ

6∑
i=1

(2i− 1) =
6∑

i=1

2i−
6∑

i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6+ 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without wriƟng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 37 is incredibly important when dealing with large sums as we’ll soon
see. ...

Riemann Sums

Consider again
∫ 4
0 (4x − x2) dx. We will approximate this definite integral

using 16 equally spaced subintervals and the Right Hand Rule in Example 119.
Before doing so, it will pay to do some careful preparaƟon.

Figure 5.18 shows a number line of [0, 4] divided into 16 equally spaced
subintervals. We denote 0 as x1; we have marked the values of x5, x9, x13 and
x17. We could mark them all, but the figure would get crowded. While it is easy
to figure that x10 = 2.25, in general, wewant amethod of determining the value
of xi without consulƟng the figure. Consider:

..

xi = x1 + (i− 1)∆x

. starƟng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So x10 = x1 + 9(4/16) = 2.25.
If we had parƟƟoned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x32 as

x32 = x1 + 31(4/100) = 1.24.

(That was far faster than creaƟng a sketch first.)

Notes:
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5.3 Riemann Sums

Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is
[x2, x3]; the i th subinterval is [xi, xi+1].

When using the LeŌ Hand Rule, the height of the i th rectangle will be f(xi).

Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+1).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+1

2

)
.

Thus approximaƟng
∫ 4
0 (4x− x2) dx with 16 equally spaced subintervals can

be expressed as follows:

LeŌ Hand Rule:
16∑
i=1

f(xi)∆x

Right Hand Rule:
16∑
i=1

f(xi+1)∆x

Midpoint Rule:
16∑
i=1

f
(
xi + xi+1

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us pracƟce using the Right Hand Rule and the summaƟon formulas introduced
in Theorem 37.

.. Example 119 ..ApproximaƟng definite integrals using sums
Approximate

∫ 4
0 (4x−x2) dx using the Right Hand Rule and summaƟon formulas

with 16 and 1000 equally spaced intervals.

SÊ½çã®ÊÄ Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi+1)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0+ (i− 1)∆x, we have

xi+1 = 0+ (i+ 1− 1)∆x
= i∆x

Notes:
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Figure 5.19: ApproximaƟng
∫ 4
0 (4x−x2) dx

with the Right Hand Rule and 16 evenly
spaced subintervals.

Chapter 5 IntegraƟon

Using the summaƟon formulas, consider:∫ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi+1)∆x

=
16∑
i=1

f(i∆x)∆x

=
16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)
16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3)

= (4∆x2)
16 · 17

2
−∆x3

16(17)(33)
6

= 4 · 0.252 · 136− 0.253 · 1496
= 10.625

We were able to sum up the areas of 16 rectangles with very liƩle computa-
Ɵon. NoƟce EquaƟon (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of∆x), we can use that equaƟon to sum up 1000 rectangles!

We do so here, skipping from the original summand to the equivalent of
EquaƟon (5.3) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi+1)∆x

= (4∆x2)
1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3

1000(1001)(2001)
6

= 4 · 0.0042 · 500500− 0.0043 · 333, 833, 500
= 10.666656

Usingmany,many rectangles, wehave a likely good approximaƟonof
∫ 4
0 (4x−

x2)∆x. That is, ∫ 4

0
(4x− x2) dx ≈ 10.666656....

Notes:
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Figure 5.20: An example of a general Rie-
mann sum to approximate

∫ 4
0 (4x−x2) dx.

5.3 Riemann Sums

Before the above example, we statedwhat the summaƟons for the LeŌHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure;
the only difference was at what values to evaluate f. All three are examples of
an evenmore general construcƟon, named aŌermathemaƟcian Georg Friedrich
Bernhard Riemann.

.

.

.
DefiniƟon 21 Riemann Sum

Let f be defined on the closed interval [a, b] and let∆x be a parƟƟon of
[a, b], with

a = x1 < x2 < . . . < xn < xn+1 = b.

Let∆xi denote the length of the i th subinterval [xi, xi+1] and let ci denote
any value in the i th subinterval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

In this general form, the subintervals do not have be of equal length, and one
can choose a point ci inside each subinterval any way they choose (and not just
the leŌ endpoint, or the midpoint, etc.) Figure 5.20 shows the approximaƟng
rectangles of a Riemann sum of

∫ 4
0 (4x − x2) dx. (This parƟcular approximaƟon

is of liƩle use; clearly the width and heights of the rectangles were not chosen
“well.”)

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construcƟon makes computaƟons easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

.

.

.
Key Idea 8 Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

2. The i th term of the parƟƟon is xi = a+ (i− 1)∆x. (This makes xn+1 = b.)

(conƟnued . . .)

Notes:
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.

.

.
Key Idea 8 Riemann Sum Concepts – ConƟnued

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

3. The LeŌ Hand Rule summaƟon is:
n∑

i=1

f(xi)∆x (ci = xi).

4. The Right Hand Rule summaƟon is:
n∑

i=1

f(xi+1)∆x (ci = xi+1).

5. The Midpoint Rule summaƟon is:
n∑

i=1

f
(
xi + xx+1

2

)
∆x (ci = (xi + xi+1)/2).

Let’s do another example.

.. Example 120 ..ApproximaƟng definite integrals with sums
Approximate

∫ 3
−2(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

SÊ½çã®ÊÄ Following Key Idea 8, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i− 1) = i/2− 5/2.

As we are using the Midpoint Rule, we will also need xi+1 and
xi + xi+1

2
. Since

xi = i/2− 5/2, xi+1 = (i+ 1)/2− 5/2 = i/2− 2. This gives

xi + xi+1

2
=

(i/2− 5/2) + (i/2− 2)
2

=
i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using summaƟon

Notes:
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Figure 5.21: ApproximaƟng
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
120.

5.3 Riemann Sums

formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi + xi+1

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=
10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x
10∑
i=1

[(
5
2

)
i− 37

4

]

= ∆x

(
5
2

10∑
i=1

(i)−
10∑
i=1

(
37
4

))

=
1
2

(
5
2
· 10(11)

2
− 10 · 37

4

)
=

45
2

= 22.5

Note the graph of f(x) = 5x + 2 in Figure 5.21. The regions whose area
is computed by the definite integral are triangles, meaning we can find the ex-
act answer without summaƟon techniques. We find that the exact answer is
indeed 22.5. One of the strengths of the Midpoint Rule is that each rectangle
includes area that should not be counted, but misses other area that should.
When the parƟƟon size is small, these two amounts are about equal and these
errors “cancel each other out.”

Note too thatwhen the funcƟon is negaƟve, the rectangles have a “negaƟve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negaƟve, the area is counted as negaƟve. ...

NoƟce in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculaƟons unƟl the very end.
MathemaƟcians love to abstract ideas; let’s approximate another region using n
subintervals, where we do not specify a value of n unƟl the very end.

.. Example 121 ..ApproximaƟngdefinite integralswith a formula, using sums
Revisit

∫ 4
0 (4x−x2)dx yet again. Approximate this definite integral using theRight

Hand Rule with n equally spaced subintervals.

SÊ½çã®ÊÄ Using Key Idea 8, we know∆x = 4−0
n = 4/n. We also find

Notes:
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xi = 0 + ∆x(i − 1) = 4(i − 1)/n. The Right Hand Rule uses xi+1, which is
xi+1 = 4i/n.

We construct the Right Hand Rule Riemann sum as follows:∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi+1)∆x

=
n∑

i=1

f
(
4i
n

)
∆x

=
n∑

i=1

[
4
4i
n
−
(
4i
n

)2
]
∆x

=

n∑
i=1

(
16∆x
n

)
i−

n∑
i=1

(
16∆x
n2

)
i2

=

(
16∆x
n

) n∑
i=1

i−
(
16∆x
n2

) n∑
i=1

i2

=

(
16∆x
n

)
· n(n+ 1)

2
−
(
16∆x
n2

)
n(n+ 1)(2n+ 1)

6
( recall
∆x = 4/n

)
=

32(n+ 1)
n

− 32(n+ 1)(2n+ 1)
3n2

(now simplify)

=
32
3

(
1− 1

n2

)
..

The result is an amazing, easy to use formula. To approximate the definite
integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathemaƟcs has been
limited to geometry and algebra (finding areas and manipulaƟng expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Notes:
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Both common sense and high–level mathemaƟcs tell us that as n gets large, the
approximaƟon gets beƩer. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ 4
0 (4x− x2) dx. That is,∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6
...

This secƟon started with a fundamental calculus technique: make an ap-
proximaƟon, refine the approximaƟon to make it beƩer, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s pracƟce this again.

.. Example 122 ..ApproximaƟngdefinite integralswith a formula, using sums
Find a formula that approximates

∫ 5
−1 x

3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

SÊ½çã®ÊÄ Following Key Idea 8, we have ∆x = 5−(−1)
n = 6/n. We

have xi = (−1) + (i − 1)∆x; as the Right Hand Rule uses xi+1, we have xi+1 =
(−1) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-
plificaƟons):∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi+1)∆x

=
n∑

i=1

f(−1+ i∆x)∆x

=
n∑

i=1

(−1+ i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

=
n∑

i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summaƟon)
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Figure 5.22: ApproximaƟng
∫ 5
−1 x

3 dx us-
ing the Right Hand Rule and 10 evenly
spaced subintervals.

Chapter 5 IntegraƟon

= ∆x4
n∑

i=1

i3 − 3∆x3
n∑

i=1

i2 + 3∆x2
n∑

i=1

i−
n∑

i=1

∆x

= ∆x4
(
n(n+ 1)

2

)2

− 3∆x3
n(n+ 1)(2n+ 1)

6
+ 3∆x2

n(n+ 1)
2

− n∆x

(use∆x = 6/n)

=
1296
n4

· n
2(n+ 1)2

4
− 3

216
n3

· n(n+ 1)(2n+ 1)
6

+ 3
36
n2

n(n+ 1)
2

− 6

(now do a sizable amount of algebra to simplify)

= 156+
378
n

+
216
n2

Once again, we have found a compact formula for approximaƟng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximaƟon of 195.96 (these rectangles are shown
in Figure 5.22). Using n = 100 gives an approximaƟon of 159.802.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156+

378
n

+
216
n2

)
= 156.

...

Limits of Riemann Sums

We have used limits to evaluate exactly given definite limits. Will this al-
ways work? We will show, given not–very–restricƟve condiƟons, that yes, it will
always work.

The previous two examples demonstrated how an expression such as
n∑

i=1

f(xi+1)∆x

can be rewriƩen as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summaƟon as a funcƟon of n.

An n value is given (where n is a posiƟve integer), and the sum of areas of n
equally spaced rectangles is returned, using the LeŌ Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=1

f(xi)∆x, the sum of equally spaced rectangles formed using

the LeŌ Hand Rule,
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5.3 Riemann Sums

• SR(n) =
n∑

i=1

f(xi+1)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi + xi+1

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definiƟon of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes one step further.

Let ∆x represent any parƟƟon of [a, b], and let ∥∆x∥ denote the length of the
longest subinterval of this parƟƟon. The theorem also states that limit of any
Riemann sum of the form

∑n
i=1 f(ci)∆xi, as ∥∆x∥ → 0, also gives the exact

value of the definite integral.

.

.

.
Theorem 38 Definite Integrals and the Limit of Riemann Sums

Let f be conƟnuous on the closed interval [a, b] and let SL(n), SR(n) and
SM(n) be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n),

2. lim
n→∞

SL(n) = lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi, where the laƩer sum is any Rie-

mann sum of f on [a, b], and

3. lim
n→∞

SL(n) =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few secƟons here.

• Knowing the “area under the curve” can be useful. One common example
is: the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the area under f

on the interval [a, b].

Notes:
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Chapter 5 IntegraƟon

• While we can approximate a definite integral manyways, we have focused
on using rectangleswhose heights can be determined using: the LeŌHand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of derivaƟves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next secƟonwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connecƟon between
the indefinite integral and the definite integral.
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Exercises 5.3
Terms and Concepts
1. A fundamental calculus technique is to use to re-

fine approximaƟons to get an exact answer.

2. What is the upper bound in the summaƟon
14∑
i=7

(48i −

201)?

3. This secƟon approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises 5 – 11, write out each term of the summaƟon and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
5∑

i=1

1
i

9.
6∑

i=1

(−1)ii

10.
4∑

i=1

(
1
i
− 1

i+ 1

)

11.
5∑

i=0

(−1)i cos(πi)

In Exercises 12 – 15, write each sum in summaƟon notaƟon.

12. 3+ 6+ 9+ 12+ 15

13. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

14.
1
2
+

2
3
+

3
4
+

4
5

15. 1− e+ e2 − e3 + e4

In Exercises 16 – 22, evaluate the summaƟon using Theorem
37.

16.
25∑
i=1

i

17.
10∑
i=1

(3i2 − 2i)

18.
15∑
i=1

(2i3 − 10)

19.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

20.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

21. 1+ 2+ 3+ . . .+ 99+ 100

22. 1+ 4+ 9+ . . .+ 361+ 400

Theorem 37 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, along with other parts of Theorem 37, to eval-
uate the summaƟons given in Exercises 23 – 26.

23.
20∑

i=11

i

24.
25∑

i=16

i3

25.
12∑
i=7

4

26.
10∑
i=5

4i3

219



In Exercises 27 – 32, a definite integral∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

27.
∫ 3

−3
x2 dx, with 6 rectangles using the LeŌ Hand Rule.

28.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

29.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

30.
∫ 3

0
2x dx, with 5 rectangles using the LeŌ Hand Rule.

31.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

32.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 33 – 38, a definite integral∫ b

a
f(x) dx is given. As demonstrated in Examples 121

and 122, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n → ∞ to find the

exact value of
∫ b

a
f(x) dx.

33.
∫ 1

0
x3 dx, using the Right Hand Rule.

34.
∫ 1

−1
3x2 dx, using the LeŌ Hand Rule.

35.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

36.
∫ 4

1
(2x2 − 3) dx, using the LeŌ Hand Rule.

37.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

38.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

Review
In Exercises 39 – 44, find an anƟderivaƟve of the given func-
Ɵon.

39. f(x) = 5 sec2 x

40. f(x) =
7
x

41. g(t) = 4t5 − 5t3 + 8

42. g(t) = 5 · 8t

43. g(t) = cos t+ sin t

44. f(x) =
1√
x
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Figure 5.23: The area of the shaded re-
gion is F(x) =

∫ x
a f(t) dt.

5.4 The Fundamental Theorem of Calculus

5.4 The Fundamental Theorem of Calculus

Let f(t)be a conƟnuous funcƟondefinedon [a, b]. The definite integral
∫ b
a f(x)dx

is the “area under f ” on [a, b]. We can turn this into a funcƟon by leƫng the
upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.23. We can study this funcƟon using our knowledge of the definite
integral. For instance, F(a) = 0 since

∫ a
a f(t) dt = 0.

We can also apply calculus ideas to F(x); in parƟcular, we can compute its
derivaƟve. While thismay seem like an innocuous thing to do, it has far–reaching
implicaƟons, as demonstrated by the fact that the result is given as an important
theorem.

.

.

.
Theorem 39 The Fundamental Theorem of Calculus, Part 1

Let f be conƟnuous on [a, b] and let F(x) =
∫ x
a f(t) dt. Then F is a differ-

enƟable funcƟon on (a, b), and

F ′(x) = f(x).

IniƟally this seems simple, as demonstrated in the following example.

.. Example 123 Using the Fundamental Theorem of Calculus, Part 1

Let F(x) =
∫ x

−5
(t2 + sin t) dt. What is F ′(x)?

SÊ½çã®ÊÄ Using the Fundamental Theoremof Calculus, wehave F ′(x) =
x2 + sin x. ..

This simple example reveals something incredible: F(x) is an anƟderivaƟve
of x2 + sin x! Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)

We have done more than found a complicated way of compuƟng an an-
ƟderivaƟve. Consider a funcƟon f defined on an open interval containing a, b
and c. Suppose we want to compute

∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using

Notes:
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Chapter 5 IntegraƟon

the properƟes of the definite integral found in Theorem 36, we know∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using anƟderivaƟves! This is the second part of the
Fundamental Theorem of Calculus.

.

.

.
Theorem 40 The Fundamental Theorem of Calculus, Part 2

Let f be conƟnuous on [a, b] and let F be any anƟderivaƟve of f. Then∫ b

a
f(x) dx = F(b)− F(a).

.. Example 124 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of Ɵme in the previous secƟon studying

∫ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SÊ½çã®ÊÄ We need an anƟderivaƟve of f(x) = 4x− x2. All anƟderiva-
Ɵves of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states∫ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous secƟon, just
with much less work. ..

NotaƟon: A special notaƟon is oŌen used in the process of evaluaƟng definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-

ing F(b) − F(a), the notaƟon F(x)
∣∣∣b
a
is used. Thus the soluƟon to Example 124

would be wriƩen as:∫ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.
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5.4 The Fundamental Theorem of Calculus

The Constant C: Any anƟderivaƟve F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evaluaƟng F(b) − F(a), so it does not maƩer what value is picked. This being
the case, we might as well let C = 0.

.. Example 125 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
∫ 2

−2
x3 dx 2.

∫ π

0
sin x dx 3.

∫ 5

0
et dt 4.

∫ 9

4

√
u du 5.

∫ 5

1
2 dx

SÊ½çã®ÊÄ

1.
∫ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

2.
∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interesƟng; it says that the area under one “hump” of a sine curve
is 2.)

3.
∫ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
∫ 9

4

√
u du =

∫ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.

5.
∫ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interesƟng; the integrand is a constant funcƟon, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
NoƟce how the evaluaƟon of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
∫ b
a c dx = c(b− a)...

Understanding MoƟon with the Fundamental Theorem of Calcu-
lus

We established, starƟng with Key Idea 1, that the derivaƟve of a posiƟon
funcƟon is a velocity funcƟon, and the derivaƟve of a velocity funcƟon is an ac-
celeraƟon funcƟon. Now consider definite integrals of velocity and acceleraƟon

funcƟons. Specifically, if v(t) is a velocity funcƟon, what does
∫ b

a
v(t) dtmean?
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The Fundamental Theorem of Calculus states that∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any anƟderivaƟve of v(t). Since v(t) is a velocity funcƟon, V(t)
must be a posiƟon funcƟon, and V(b)− V(a)measures a change in posiƟon, or
displacement.

.. Example 126 Finding displacement
A ball is thrown straight up with velocity given by v(t) = −32t + 20Ō/s, where

t is measured in seconds. Find, and interpret,
∫ 1

0
v(t) dt.

SÊ½çã®ÊÄ Using the Fundamental Theorem of Calculus, we have∫ 1

0
v(t) dt =

∫ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t + 20,
the height of the ball, 1 second later, will be 4 feet above the iniƟal height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height at t = 0 and t = 1 is 4Ō.) ..

IntegraƟng an acceleraƟon funcƟon likewise gives a change in velocity. We
donot have a simple term for this analogous to displacement. If a(t) = 5miles/h2
and t is measured in hours, then∫ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theoremof Calculus (FTC) states that given F(x) =∫ x

a
f(t) dt, F′(x) = f(x). Using other notaƟon,

d
dx
(
F(x)

)
= f(x). While we have

just pracƟced evaluaƟng definite integrals, someƟmes finding anƟderivaƟves is
impossible and we need to rely on other techniques to approximate the value

Notes:
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5.4 The Fundamental Theorem of Calculus

of a definite integral. FuncƟons wriƩen as F(x) =
∫ x
a f(t) dt are useful in such

situaƟons.
It may be of further use to compose such a funcƟon with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.

What is the derivaƟve of such a funcƟon? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F′

(
g(x)

)
g′(x) = f

(
g(x)

)
g′(x).

An example will help us understand this.

.. Example 127 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
∫ x2

2
ln t dt.

SÊ½çã®ÊÄ We can view F(x) as being the funcƟon G(x) =

∫ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G′(x) = ln x. The Chain Rule gives us

F′(x) = G′(g(x))g′(x)
= ln(g(x))g′(x)

= ln(x2)2x

= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped. ..

PracƟce this once more.

.. Example 128 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
∫ 5

cos x
t3 dt.

SÊ½çã®ÊÄ Note that F(x) = −
∫ cos x

5
t3 dt. Viewed this way, the deriva-

Ɵve of F is straighƞorward:

F′(x) = sin x cos3 x...

Notes:
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Figure 5.24: Finding the area bounded by
two funcƟons on an interval; it is found
by subtracƟng the area under g from the
area under f.
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Figure 5.25: Sketching the region en-
closed by y = x2 + x− 5 and y = 3x− 2
in Example 129.
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Area Between Curves

Consider conƟnuous funcƟons f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.24. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathemaƟcal notaƟon, the area is∫ b

a
f(x) dx−

∫ b

a
g(x) dx.

ProperƟes of the definite integral allow us to simplify this expression to∫ b

a

(
f(x)− g(x)

)
dx.

.

.

.
Theorem 41 Area Between Curves

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

.. Example 129 ..Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

SÊ½çã®ÊÄ It will help to sketch these two funcƟons, as done in Figure
5.25. The region whose area we seek is completely bounded by these two
funcƟons; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =
3x− 2 and solve for x:

x2 + x− 5 = 3x− 2

(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3

Notes:
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Figure 5.26: A graph of a funcƟon f to in-
troduce the Mean Value Theorem.
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Figure 5.27: Differently sized rectan-
gles give upper and lower bounds on∫ 4
1 f(x) dx; the last rectangle matches the
area exactly.

5.4 The Fundamental Theorem of Calculus

Following Theorem 41, the area is∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6

...

The Mean Value Theorem and Average Value

Consider the graph of a funcƟon f in Figure 5.26 and the area defined by∫ 4
1 f(x) dx. Three rectangles are drawn in Figure 5.27; in (a), the height of the
rectangle is greater than f on [1, 4], hence the area of this rectangle is is greater
than

∫ 4
0 f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

∫ 4
1 f(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ 4
0 f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too liƩle,” as in (b), give areas greater/lesser than
∫ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

.

.

.
Theorem 42 The Mean Value Theorem of IntegraƟon

Let f be conƟnuous on [a, b]. There exists a value c in [a, b] such that∫ b

a
f(x) dx = f(c)(b− a).

This is an existenƟal statement; c exists, but we do not provide a method
of finding it. Theorem 42 is directly connected to the Mean Value Theorem of
DifferenƟaƟon, given as Theorem 27; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Notes:
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Figure 5.28: A graph of y = sin x on
[0, π] and the rectangle guaranteed by
the Mean Value Theorem.
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Figure 5.29: On top, a graph of y =
f(x) and the rectangle guaranteed by the
Mean Value Theorem. Below, y = f(x) is
shiŌed down by f(c); the resulƟng “area
under the curve” is 0.
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.. Example 130 Using the Mean Value Theorem
Consider

∫ π

0 sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SÊ½çã®ÊÄ We first need to evaluate
∫ π

0 sin x dx. (This was previously
done in Example 125.) ∫ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

In Figure 5.28 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π]. ..

Let f be a funcƟon on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider∫ b

a

(
f(x)− f(c)

)
dx:∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

When f(x) is shiŌed by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure
5.29 for an illustraƟon of this. In this sense, we can say that f(c) is the average
value of f on [a, b].

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewriƩen as

f(c) =
1

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, parƟƟon the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < . . . < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + . . .+ f(cn)

)
=

1
n

n∑
i=1

f(ci).

Notes:
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5.4 The Fundamental Theorem of Calculus

MulƟply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1

f(ci)
1
n

=
n∑

i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a definiƟon.

.

.

.
DefiniƟon 22 The Average Value of f on [a, b]

Let f be conƟnuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a
f(x) dx.

An applicaƟon of this definiƟon is given in the following example.

.. Example 131 Finding the average value of a funcƟon
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in Ō/s.

What is the average velocity of the object?

SÊ½çã®ÊÄ By our definiƟon, the average velocity is:

1
3− 0

∫ 3

0
(t− 1)2 dt =

1
3

∫ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 Ō/s.

..

Notes:

229



Chapter 5 IntegraƟon

We can understand the above example through a simpler situaƟon. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/Ɵme = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 131? We calculate this
by integraƟng its velocity funcƟon:

∫ 3
0 (t− 1)2 dt = 3 Ō. Its final posiƟon was 3

feet from its iniƟal posiƟon aŌer 3 seconds: its average velocity was 1 Ō/s.

This secƟon has laid the groundwork for a lot of great mathemaƟcs to fol-
low. The most important lesson is this: definite integrals can be evaluated using
anƟderivaƟves. Since the previous secƟon established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, compuƟng anƟderivaƟves is much
more difficult than compuƟng derivaƟves. The next chapter is devoted to tech-
niques of finding anƟderivaƟves so that a wide variety of definite integrals can
be evaluated.

Notes:
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Exercises 5.4
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integraƟon is most commonly used when
evaluaƟng definite integrals?

3. T/F: If f is a conƟnuous funcƟon, then F(x) =
∫ x

a
f(t) dt is

also a conƟnuous funcƟon.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises 5 – 28, evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x+ 1) dx

6.
∫ 4

0
(x− 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x
dx

11.
∫ 1

−1
5x dx

12.
∫ −1

−2
(4− 2x3) dx

13.
∫ π

0
(2 cos x− 2 sin x) dx

14.
∫ 3

1
ex dx

15.
∫ 4

0

√
t dt

16.
∫ 25

9

1√
t
dt

17.
∫ 8

1

3
√
x dx

18.
∫ 2

1

1
x
dx

19.
∫ 2

1

1
x2

dx

20.
∫ 2

1

1
x3

dx

21.
∫ 1

0
x dx

22.
∫ 1

0
x2 dx

23.
∫ 1

0
x3 dx

24.
∫ 1

0
x100 dx

25.
∫ 4

−4
dx

26.
∫ −5

−10
3 dx

27.
∫ 2

−2
0 dx

28.
∫ π/3

π/6
csc x cot x dx

29. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a posiƟve, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a posiƟve, even

integer.

In Exercises 30 – 33, find a value c guaranteed by the Mean
Value Theorem.

30.
∫ 2

0
x2 dx

31.
∫ 2

−2
x2 dx

32.
∫ 1

0
ex dx

33.
∫ 16

0

√
x dx

In Exercises 34 – 39, find the average value of the funcƟon on
the given interval.

34. f(x) = sin x on [0, π/2]

35. y = sin x on [0, π]

36. y = x on [0, 4]

37. y = x2 on [0, 4]

38. y = x3 on [0, 4]

39. g(t) = 1/t on [1, e]

In Exercises 40 – 44, a velocity funcƟon of an object moving
along a straight line is given. Find the displacement of the
object over the given Ɵme interval.

40. v(t) = −32t+ 20Ō/s on [0, 5]

41. v(t) = −32t+ 200Ō/s on [0, 10]
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42. v(t) = 2tmph on [−1, 1]

43. v(t) = cos t Ō/s on [0, 3π/2]

44. v(t) = 4
√
t Ō/s on [0, 16]

In Exercises 45 – 48, an acceleraƟon funcƟon of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given Ɵme interval.

45. a(t) = −32Ō/s2 on [0, 2]

46. a(t) = 10Ō/s2 on [0, 5]

47. a(t) = t Ō/s2 on [0, 2]

48. a(t) = cos t Ō/s2 on [0, π]

In Exercises 49 – 52, sketch the given funcƟons and find the
area of the enclosed region.

49. y = 2x, y = 5x, and x = 3.

50. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1.

51. y = x2 − 2x+ 5, y = 5x− 5.

52. y = 2x2 + 2x− 5, y = x2 + 3x+ 7.

In Exercises 53 – 56, find F′(x).

53. F(x) =
∫ x3+x

2

1
t
dt

54. F(x) =
∫ 0

x3
t3 dt

55. F(x) =
∫ x2

x
(t+ 2) dt

56. F(x) =
∫ ex

ln x
sin t dt
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Figure 5.30: Graphically represenƟng
three definite integrals that cannot be
evaluated using anƟderivaƟves.

5.5 Numerical IntegraƟon

5.5 Numerical IntegraƟon
The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compuƟng an-
ƟderivaƟves. Despite the power of this theorem, there are sƟll situaƟons where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situaƟon we explore is where we cannot compute the an-
ƟderivaƟve of the integrand. The second case is when we actually do not know
the integrand, but only its value when evaluated at certain points.

An elementary funcƟon is any funcƟon that is a combinaƟon of polynomi-
als, nth roots, raƟonal, exponenƟal, logarithmic and trigonometric funcƟons. We
can compute the derivaƟve of any elementary funcƟon, but there are many el-
ementary funcƟons that we cannot compute an anƟderivaƟve of. For example,
the following funcƟons do not have anƟderivaƟves that we can express with el-
ementary funcƟons:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the anƟderivaƟves of e−x2 is to simply write∫
e−x2 dx.
This secƟon outlines three common methods of approximaƟng the value of

definite integrals. We describe each as a systemaƟc method of approximaƟng
area under a curve. By approximaƟng this area accurately, we find an accurate
approximaƟon of the corresponding definite integral.

We will apply the methods we learn in this SecƟon to the following definite
integrals: ∫ 1

0
e−x2 dx,

∫ π
2

− π
4

sin(x3) dx, and
∫ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 5.30.

The LeŌ and Right Hand Rule Methods

In SecƟon 5.3 we addressed the problem of evaluaƟng definite integrals by
approximaƟng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximaƟng definite integrals.

We start with a review of notaƟon. Let f be a conƟnuous funcƟon on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We parƟƟon [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these

Notes:

233



.....

y = e−x2

. 0.2. 0.4. 0.6. 0.8. 1.

0.5

.

1

.
x

.

y

.....

y = e−x2

. 0.2. 0.4. 0.6. 0.8. 1.

0.5

.

1

.
x

.

y

Figure 5.31: ApproximaƟng
∫ 1
0 e−x2 dx in

Example 132.

Chapter 5 IntegraƟon

subintervals are labeled as

x1 = a, x2 = a+∆x, x3 = a+ 2∆x, . . . , xi = a+ (i− 1)∆x, . . . , xn+1 = b.

Key Idea 8 states that to use the LeŌ Hand Rule we use the summaƟon
n∑

i=1

f(xi)∆x and to use the Right Hand Rule we use
n∑

i=1

f(xi+1)∆x. We review

the use of these rules in the context of examples.

.. Example 132 ..ApproximaƟng definite integrals with rectangles

Approximate
∫ 1

0
e−x2 dx using the LeŌ and Right Hand Rules with 5 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by parƟƟoning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x1 = 0, x2 = 0.2, x3 = 0.4, x4 = 0.6, x5 = 0.8, and x6 = 1.

Using the LeŌ Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527)(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi+1)∆x =
(
f(x2) + f(x3) + f(x4) + f(x5) + f(x6)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368)(0.2)

≈ 0.681.

Figure 5.31 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this parƟcular case, the LeŌ Hand
Rule is an over approximaƟon and the Right Hand Rule is an under approxima-
Ɵon. To get a beƩer approximaƟon, we could use more rectangles, as we did in

Notes:
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xi Exact Approx. sin(x3i )
x1 −π/4 −0.785 −0.466
x2 −7π/40 −0.550 −0.165
x3 −π/10 −0.314 −0.031
x4 −π/40 −0.0785 0
x5 π/20 0.157 0.004
x6 π/8 0.393 0.061
x7 π/5 0.628 0.246
x8 11π/40 0.864 0.601
x9 7π/20 1.10 0.971
x10 17π/40 1.34 0.690
x11 π/2 1.57 −0.670

Figure 5.32: Table of values used to ap-
proximate

∫ π
2

− π
4
sin(x3) dx in Example 133.
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Figure 5.33: ApproximaƟng∫ π
2

− π
4
sin(x3) dx in Example 133.

5.5 Numerical IntegraƟon

SecƟon 5.3. We could also average the LeŌ and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places aŌer the decimal, is 0.7468, showing
our average is a good approximaƟon. ...

.. Example 133 ApproximaƟng definite integrals with rectangles

Approximate
∫ π

2

− π
4

sin(x3) dx using the LeŌ and Right Hand Rules with 10 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40

≈ 0.236.

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.32, we give the exact values of the endpoints, their decimal approximaƟons,
and decimal approximaƟons of sin(x3) evaluated at these points.

Once this table is created, it is straighƞorward to approximate the definite
integral using the LeŌ and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The LeŌHand Rule sums the first 10 values
of sin(x3i ) and mulƟplies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and mulƟplies by∆x. Therefore we have:

LeŌ Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

Average of the LeŌ and Right Hand Rules: 0.4275.
The actual answer, accurate to 3 places aŌer the decimal, is 0.460. Our ap-

proximaƟons were once again fairly good. The rectangles used in each approx-
imaƟon are shown in Figure 5.33. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximaƟon. ..

The Trapezoidal Rule

In Example 132 we approximated the value of
∫ 1

0
e−x2 dx with 5 rectangles

of equal width. Figure 5.31 shows the rectangles used in the LeŌ and Right Hand
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Figure 5.34: ApproximaƟng
∫ 1
0 e−x2 dx us-

ing 5 trapezoids of equal widths.
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Figure 5.35: The area of a trapezoid.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 5.36: A table of values of e−x2 .

Chapter 5 IntegraƟon

Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approximaƟons will only come by using
lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.34, we show the region under f(x) = e−x2 on [0, 1] ap-
proximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a beƩer
approximaƟon of

∫ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap-

proximaƟon of the area!)
The formula for the area of a trapezoid is given in Figure 5.35. We approxi-

mate
∫ 1
0 e−x2 dx with these trapezoids in the following example.

.. Example 134 ApproximaƟng definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ To compute the areas of the 5 trapezoids in Figure 5.34, it
will again be useful to create a table of values as shown in Figure 5.36.

The leŌmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leŌmost trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)+

0.698+ 0.527
2

(0.2) +
0.527+ 0.368

2
(0.2) = 0.7445.

We approximate
∫ 1

0
e−x2 dx ≈ 0.7445. ..

There are many things to observe in this example. Note how each term in
the final summaƟonwasmulƟplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summaƟon as:

1
2
(0.2)

[
(1+0.961)+(0.961+0.852)+(0.852+0.698)+(0.698+0.527)+(0.527+0.368)

]
.
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Now noƟce that all numbers except for the first and the last are added twice.
Therefore we can write the summaƟon even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x1,

x2, . . ., xn+1, we again have∆x =
b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑
i=1

f(xi) + f(xi+1)

2
∆x

=
∆x
2

n∑
i=1

(
f(xi) + f(xi+1)

)
=

∆x
2

[
f(x1) + 2

n∑
i=2

f(xi) + f(xn+1)
]
.

.. Example 135 Using the Trapezoidal Rule

Revisit Example 133 and approximate
∫ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

SÊ½çã®ÊÄ Werefer back to Figure 5.32 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

− π
4

sin(x3) dx ≈ 0.236
2

[
− 0.466+ 2

(
− 0.165+ (−0.031) + . . .+ 0.971+ 0.69

)
+ (−0.67)

]
= 0.4275...

NoƟce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this secƟon;
the real work is creaƟng a table of xi and f(xi) values. Once this is completed, ap-
proximaƟng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computaƟons and make using lots
of subintervals easy.

Also noƟce the approximaƟons the Trapezoidal Rule gives. It is the average
of the approximaƟons given by the LeŌ and Right Hand Rules! This effecƟvely

Notes:
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Figure 5.37: A graph of a funcƟon f and
a parabola that approximates it well on
[1, 3].

Chapter 5 IntegraƟon

renders the LeŌ and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximaƟon is needed, one is gener-
ally beƩer off using the Trapezoidal Rule instead of either the LeŌ or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The LeŌ Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a funcƟon f with constant funcƟons
on small subintervals and then computes the definite integral of these constant
funcƟons. The Trapezoidal Rule is really approximaƟng a funcƟon fwith a linear
funcƟon on a small subinterval, then computes the definite integral of this linear
funcƟon. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximaƟng fwith a constant func-
Ɵon and then with a linear funcƟon. What is next? A quadraƟc funcƟon. By
approximaƟng the curve of a funcƟon with lots of parabolas, we generally get
an even beƩer approximaƟon of the definite integral. We call this process Simp-
son’s Rule, named aŌer Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant funcƟon that goes through that
point. Given two points, we can create a linear funcƟon that goes through those
points. Given three points, we can create a quadraƟc funcƟon that goes through
those three points (given that no two have the same x–value).

Consider three points (x1, y1), (x2, y2) and (x3, y3)whose x–values are equally
spaced and x1 < x2 < x3. Let f be the quadraƟc funcƟon that goes through these
three points. It is not hard to show that∫ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (5.4)

Consider Figure 5.37. A funcƟon f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equaƟon from above, we know exactly that∫ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approximaƟon for f on [1, 3], we can state that∫ 3

1
f(x) dx ≈ 3.

Notes:
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xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368

(a)

.....

y = e−x2

. 0.25. 0.5. 0.75. 1.

0.5

.

1

.
x

.

y

(b)

Figure 5.38: A table of values to approxi-
mate

∫ 1
0 e−x2 dx, alongwith a graph of the

funcƟon.

xi sin(x3i )
−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

Figure 5.39: Table of values used to ap-
proximate

∫ π
2

− π
4
sin(x3) dx in Example 137.

5.5 Numerical IntegraƟon

NoƟce how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/2 parabolic curves, using EquaƟon (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:∫ b

a
f(x)dx ≈ ∆x

3

[
f(x1)+4f(x2)+2f(x3)+4f(x4)+. . .+2f(xn−1)+4f(xn)+f(xn+1)

]
.

Note how the coefficients of the terms in the summaƟon have the paƩern 1, 4,
2, 4, 2, 4, . . ., 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.

.. Example 136 Using Simpson’s Rule

Approximate
∫ 1

0
e−x2 dxusing Simpson’s Rule and 4 equally spaced subintervals.

SÊ½çã®ÊÄ We begin bymaking a table of values as we have in the past,
as shown in Figure 5.38(a). Simpson’s Rule states that∫ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 132we stated that the correct answer, accurate to 4 places
aŌer the decimal, was 0.7468. Our approximaƟon with Simpson’s Rule, with 4
subintervals, is beƩer than our approximaƟon with the Trapezoidal Rule using
5!

Figure 5.38(b) shows f(x) = e−x2 along with its approximaƟng parabolas,
demonstraƟng how good our approximaƟon is. The approximaƟng curves are
nearly indisƟnguishable from the actual funcƟon. ..

.. Example 137 ..Using Simpson’s Rule

Approximate
∫ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter-

vals.

SÊ½çã®ÊÄ Figure 5.39 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x = (π/2 +
π/4)/10 ≈ 0.236.

Notes:

239



.....

y = sin(x3)

.

−1

.

1

.
−0.5

.

0.5

.

1

.

x

.

y

Figure 5.40: ApproximaƟng∫ π
2

− π
4
sin(x3) dx in Example 137 with

Simpson’s Rule and 10 equally spaced
intervals.

Chapter 5 IntegraƟon

Simpson’s Rule states that∫ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + . . .

. . .+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-
proximaƟon is within one 1/100th of the correct value. The graph in Figure 5.40
shows how closely the parabolas match the shape of the graph. ...

Summary and Error Analysis

We summarize the key concepts of this secƟon thus far in the following Key
Idea.

.

.

.
Key Idea 9 Numerical IntegraƟon

Let f be a conƟnuous funcƟon on [a, b], let n be a posiƟve integer, and let∆x =
b− a
n

.
Set x1 = a, x2 = a+∆x, . . ., xi = a+ (i− 1)∆x, xn+1 = b.

Consider
∫ b

a
f(x) dx.

LeŌ Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Right Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x2) + f(x3) + . . .+ f(xn+1)

]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

2

[
f(x1) + 2f(x2) + 2f(x3) + . . .+ 2f(xn) + f(xn+1)

]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

3

[
f(x1) + 4f(x2) + 2f(x3) + . . .+ 4f(xn) + f(xn+1)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several quesƟons in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximaƟng?

3. If there is value to approximaƟng, how are we supposed to know if the
approximaƟon is any good?

Notes:

240



5.5 Numerical IntegraƟon

These are good quesƟons, and their answers are educaƟonal. In the exam-
ples, the right answer was never computed. Rather, an approximaƟon accurate
to a certain number of places aŌer the decimal was given. In Example 132, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximaƟons were computed using numerical integraƟon but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximaƟon sƟll has its place.
How are we to tell if the approximaƟon is any good?

“Trial and error” provides one way. Using technology, make an approxima-
Ɵon with, say, 10, 100, and 200 subintervals. This likely will not take much Ɵme
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximaƟon will be. For instance, the formula might state that the approx-
imaƟon is within 0.1 of the correct answer. If the approximaƟon is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approximaƟon as accurate as one likes. Theorem
43 states what these bounds are.

.

.

.
Theorem 43 Error Bounds in the Trapezoidal Rule and Simpson’s Rule

1. Let ET be the error in approximaƟng
∫ b

a
f(x) dx using the Trapezoidal Rule.

If f has a conƟnuous 2nd derivaƟve on [a, b] andM is any upper bound of
∣∣f ′′(x)∣∣

on [a, b], then

ET ≤
(b− a)3

12n2
M.

2. Let ES be the error in approximaƟng
∫ b

a
f(x) dx using Simpson’s Rule.

If f has a conƟnuous 4th derivaƟve on [a, b] andM is any upper bound of
∣∣f (4)∣∣

on [a, b], then

ES ≤
(b− a)5

180n4
M.

There are some key things to note about this theorem.

Notes:
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Figure 5.41: Graphing f ′′(x) in Example
138 to help establish error bounds.
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Figure 5.42: Graphing f (4)(x) in Example
138 to help establish error bounds.
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1. The larger the interval, the larger the error. This should make sense intu-
iƟvely.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term relaƟng to the 4th derivaƟve of f.
Consider a cubic polynomial: it’s 4th derivaƟve is 0. Therefore, the error in
approximaƟng the definite integral of a cubic polynomial with Simpson’s
Rule is 0 – Simpson’s Rule computes the exact answer!

We revisit Examples 134 and 136 and compute the error bounds using The-
orem 43 in the following example.

.. Example 138 ..CompuƟng error bounds

Find the error bounds when approximaƟng
∫ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

SÊ½çã®ÊÄ
Trapezoidal Rule with n = 5:

We start by compuƟng the 2nd derivaƟve of f(x) = e−x2 :

f ′′(x) = e−x2(4x2 − 2).

Figure 5.41 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 43.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error esƟmaƟon formula states that our approximaƟon of 0.7445 found
in Example 134 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
∫ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 43.

Simpson’s Rule with n = 4:
We start by compuƟng the 4th derivaƟve of f(x) = e−x2 :

f (4)(x) = e−x2(16x4 − 48x2 + 12).

Notes:
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Time Speed
(mph)

0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 5.43: Speed data collected at 30
second intervals for Example 139.

5.5 Numerical IntegraƟon

Figure 5.42 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value of
f (4), in absolute value, is 12. Thus we let M = 12 and apply the error formula
from Theorem 43.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error esƟmaƟon formula states that our approximaƟonof 0.74683 found
in Example 136 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
∫ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 43. ...

At the beginning of this secƟon we menƟoned two main situaƟons where
numerical integraƟon was desirable. We have considered the case where an
anƟderivaƟve of the integrand cannot be computed. We now invesƟgate the
situaƟon where the integrand is not known. This is, in fact, the most widely
used applicaƟon of Numerical IntegraƟon methods. “Most of the Ɵme” we ob-
serve behavior but do not know “the” funcƟon that describes it. We instead
collect data about the behavior andmake approximaƟons based off of this data.
We demonstrate this in an example.

.. Example 139 ..ApproximaƟng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.43. Approximate the
distance they traveled.

SÊ½çã®ÊÄ Recall that by integraƟng a speed funcƟon we get distance
traveled. We have informaƟon about v(t); we will use Simpson’s Rule to approx-

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is converƟng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
Ɵme is measured in 30 second increments.

We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?
Since we start at Ɵme t = 0, we have that a = 0. The final recorded Ɵme came
aŌer 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.

Notes:
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Thus the distance traveled is approximately:∫ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.) ...

Notes:
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Exercises 5.5
Terms and Concepts
1. T/F: Simpson’s Rule is a method of approximaƟng an-

ƟderivaƟves.

2. What are the two basic situaƟons where approximaƟng the
value of a definite integral is necessary?

3. Why are the LeŌ and Right Hand Rules rarely used?

Problems
In Exercises 4 – 11, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

4.
∫ 1

−1
x2 dx

5.
∫ 10

0
5x dx

6.
∫ π

0
sin x dx

7.
∫ 4

0

√
x dx

8.
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx

9.
∫ 1

0
x4 dx

10.
∫ 2π

0
cos x dx

11.
∫ 3

−3

√
9− x2 dx

In Exercises 12 – 19, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

12.
∫ 1

0
cos
(
x2
)
dx

13.
∫ 1

−1
ex

2
dx

14.
∫ 5

0

√
x2 + 1 dx

15.
∫ π

0
x sin x dx

16.
∫ π/2

0

√
cos x dx

17.
∫ 4

1
ln x dx

18.
∫ 1

−1

1
sin x+ 2

dx

19.
∫ 6

0

1
sin x+ 2

dx

In Exercises 20 – 23, find n such that the error in approximat-
ing the given definite integral is less than 0.0001when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

20.
∫ π

0
sin x dx

21.
∫ 4

1

1√
x
dx

22.
∫ π

0
cos
(
x2
)
dx

23.
∫ 5

0
x4 dx

In Exercises 24 – 25, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in cenƟmeters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

24. ..

4.
7

.

6.
3

. 6.
9

. 6.
6.

5.
1

25. ..

3.
6

. 3.
6

. 4.
5. 6.

6

.

5.
6
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The previous chapter introduced the anƟderivaƟve and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applicaƟons of definite integrals than just area. As eval-
uaƟng definite integrals will become important, we will want to find anƟderiva-
Ɵves of a variety of funcƟons.

This chapter is devoted to exploring techniques of anƟdifferenƟaƟon. While
not every funcƟon has an anƟderivaƟve in terms of elementary funcƟons (a
concept introduced in the secƟon on Numerical IntegraƟon), we can sƟll find
anƟderivaƟves of many.

6.1 SubsƟtuƟon
We moƟvate this secƟon with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starƟng with f(x)
as we did?

This secƟon explores integraƟon by subsƟtuƟon. It allows us to “undo the
Chain Rule.” SubsƟtuƟon allows us to evaluate the above integral without know-
ing the original funcƟon first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subsƟtuƟon. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.
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We have established u as a funcƟon of x, so now consider the differenƟal of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremulƟplied; the dx is not “just siƫng there.”
Return to the original integral and do some subsƟtuƟons through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This secƟon contains numerous examples through which the reader will gain
understanding and mathemaƟcal maturity enabling them to regard subsƟtuƟon
as a natural tool when evaluaƟng integrals.

We stated before that integraƟon by subsƟtuƟon “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differenƟable funcƟons and consider the deriva-
Ɵve of their composiƟon:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g′(x).

Thus ∫
F ′(g(x))g′(x) dx = F(g(x)) + C.

IntegraƟon by subsƟtuƟon works by recognizing the “inside” funcƟon g(x) re-
placing it with a variable. By seƫng u = g(x), we can rewrite the derivaƟve
as

d
dx

(
F
(
u
))

= F ′(u)u′.

Since du = g′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Notes:
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6.1 SubsƟtuƟon

.

.

.
Theorem 44 IntegraƟon by SubsƟtuƟon

Let F and g be differenƟable funcƟons, where the range of g is an interval
I and the domain of F is contained in I. Then∫

F ′(g(x))g′(x) dx = F(g(x)) + C.

If u = g(x), then du = g′(x)dx and∫
F ′(g(x))g′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subsƟtuƟon is to make the integraƟon step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the anƟderivaƟve of the derivaƟve of F

is just F, plus a constant. The “work” involved is making the proper subsƟtuƟon.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

.. Example 140 ..IntegraƟng by subsƟtuƟon

Evaluate
∫

x sin(x2 + 5) dx.

SÊ½çã®ÊÄ Knowing that subsƟtuƟon is related to the Chain Rule, we
choose to let u be the “inside” funcƟon of sin(x2+5). (This is not always a good
choice, but it is oŌen the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that mulƟplicaƟon is commutaƟve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subsƟtute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du
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= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

uaƟng the derivaƟve of the right hand side. ...

.. Example 141 IntegraƟng by subsƟtuƟon

Evaluate
∫

cos(5x) dx.

SÊ½çã®ÊÄ Again let u replace the “inside” funcƟon. Leƫng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equaƟon by 5 to obtain 1

5du = dx. We can now subsƟtute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differenƟaƟon. ..

The previous example exhibited a common, and simple, type of subsƟtuƟon.
The “inside” funcƟon was a linear funcƟon (in this case, y = 5x). When the
inside funcƟon is linear, the resulƟng integraƟon is very predictable, outlined
here.

.

.

.
Key Idea 10 SubsƟtuƟon With A Linear FuncƟon

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Leƫng

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.

Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 10, but we will only employ it aŌer going through all of the steps.
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.. Example 142 IntegraƟng by subsƟtuƟng a linear funcƟon

Evaluate
∫

7
−3x+ 1

dx.

SÊ½çã®ÊÄ View this a composiƟon of funcƟons f(g(x)), where f(x) =
7/x and g(x) = −3x + 1. Employing our understanding of subsƟtuƟon, we let
u = −3x + 1, the inside funcƟon. Thus du = −3dx. The integrand lacks a −3;
hence divide the previous equaƟon by −3 to obtain −du/3 = dx. We can now
evaluate the integral through subsƟtuƟon.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 10 is faster, recognizing that u is linear and a = −3. One may
want to conƟnue wriƟng out all the steps unƟl they are comfortable with this
parƟcular shortcut. ..

Not all integrals that benefit from subsƟtuƟon have a clear “inside” funcƟon.
Several of the following examples will demonstrate ways in which this occurs.

.. Example 143 ..IntegraƟng by subsƟtuƟon

Evaluate
∫

sin x cos x dx.

SÊ½çã®ÊÄ There is not a composiƟonof funcƟonhere to exploit; rather,
just a product of funcƟons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is oŌen beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subsƟtuƟon becomes very straighƞorward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.
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One would do well to ask “What would happen if we let u = cos x?” The an-
swer: the result is just as easy to find, yet looks very different. The challenge to
the reader is to evaluate the integral leƫng u = cos x and discovering why the
answer is the same, yet looks different. ...

Our examples so far have required “basic subsƟtuƟon.” The next example
demonstrates how subsƟtuƟons can be made that oŌen strike the new learner
as being “nonstandard.”

.. Example 144 IntegraƟng by subsƟtuƟon

Evaluate
∫

x
√
x+ 3 dx.

SÊ½çã®ÊÄ Recognizing the composiƟon of funcƟons, set u = x + 3.
Then du = dx, giving what seems iniƟally to be a simple subsƟtuƟon. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful, as before, to rewrite

√
u as

u 1
2 . ∫

x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this parƟcular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem. ..

.. Example 145 ..IntegraƟng by subsƟtuƟon

Evaluate
∫

1
x ln x

dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composiƟon of funcƟons. The line of thinking used in Example 144
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is useful here: choose something for u and consider what this implies du must
be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, seƫng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
1/u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interesƟng; the natural log of the natural log. Take the deriva-
Ɵve to confirm this answer is indeed correct. ...

Integrals Involving Trigonometric FuncƟons

SecƟon 6.3 delves deeper into integrals of a variety of trigonometric func-
Ɵons; here we use subsƟtuƟon to establish a foundaƟon that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our anƟderiva-
Ɵve knowledge. We know the anƟderivaƟves of the sine and cosine funcƟons;
what about the other standard funcƟons tangent, cotangent, secant and cose-
cant? We discover these next.

.. Example 146 ..IntegraƟon by subsƟtuƟon: anƟderivaƟves of tan x

Evaluate
∫

tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the anƟderivaƟves of tangent, hence we must assume that we have learned
something in this secƟon that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composiƟon of func-
Ɵons may not be immediately obvious, recognize that cos x is “inside” the 1/x
funcƟon. Therefore, we see if seƫng u = cos x returns usable results. We have
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent. ...

.. Example 147 ..IntegraƟng by subsƟtuƟon: anƟderivaƟves of sec x

Evaluate
∫

sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: mulƟply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of leŌ field, but it works beauƟfully. Consider:

∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

...

We can use similar techniques to those used in Examples 146 and 147 to find
anƟderivaƟves of cot x and csc x (which the reader can explore in the exercises.)
We summarize our results here.

.

.

.
Theorem 45 AnƟderivaƟves of Trigonometric FuncƟons

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

.. Example 148 ..IntegraƟon by subsƟtuƟon: powers of cos x and sin x

Evaluate
∫

cos2 x dx.

SÊ½çã®ÊÄ We have a composiƟon of funcƟons with cos x inside the x2
funcƟon. However, seƫng u = cos x means du = − sin x dx, which we do not
have in the integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x (per-
haps consult the back of this text). Note that

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equaƟon is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.
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Now use Key Idea 10:

=
1
2
x+

1
2
(− sin(2x))

2
+ C

=
1
2
x− sin(2x)

4
+ C.

We’ll make significant use of this power–reducing technique in future secƟons. ...

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integraƟon is tenuous and one may think that working with
the integrand will improperly change the results. IntegraƟon by subsƟtuƟon
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integraƟon
easier to perform.

.. Example 149 ..IntegraƟon by subsƟtuƟon: simplifying first

Evaluate
∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx.

SÊ½çã®ÊÄ One may start by seƫng u equal to either the numerator or
denominator; in each instance, the result is not workable.

When dealing with raƟonal funcƟons (i.e., quoƟents made up of polynomial
funcƟons), it is an almost universal rule that everything works beƩer when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 Ɵmes with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

IntegraƟng x + 2 is simple. The fracƟon can be integrated by seƫng u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that
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du/2 = (x+ 1) dx and then consider the following:∫
x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2+

3x+ 3
x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that aŌer dividing, subsƟtuƟon was able to be
done. In later secƟons we’ll develop techniques for handling raƟonal funcƟons
where subsƟtuƟon is not directly feasible. ...

.. Example 150 ..IntegraƟon by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, subsƟtuƟon.

SÊ½çã®ÊÄ We already know how to integrate this parƟcular example.
Rewrite

√
x as x 1

2 and simplify the fracƟon:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subsƟtuƟon as its implementaƟon is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫

(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and
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x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situaƟon, sub-
sƟtuƟon is arguably more work than our other method. The fantasƟc thing is
that it works. It demonstrates how flexible integraƟon is. ...

SubsƟtuƟon and Inverse Trigonometric FuncƟons

When studying derivaƟves of inverse funcƟons, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how SubsƟtuƟon can be used to “undo” certain derivaƟves that
are the result of the Chain Rule and Inverse Trigonometric funcƟons. We begin
with an example.

.. Example 151 ..IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons

Evaluate
∫

1
25+ x2

dx.

SÊ½çã®ÊÄ The integrand looks similar to the derivaƟve of the arctan-
gent funcƟon. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5

)2
)

=
1
25

1

1+
( x
5

)2 .
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Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5

)2 dx.

This can be integrated using SubsƟtuƟon. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5

)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

...

Example 151 demonstrates a general technique that can be applied to other
integrands that result in inverse trigonometric funcƟons. The results are sum-
marized here.

.

.

.
Theorem 46 Integrals Involving Inverse Trigonomentric FuncƟons

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s pracƟce using Theorem 46.

.. Example 152 ..IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate the given indefinite integrals.∫

1
9+ x2

dx,
∫

1

x
√

x2 − 1
100

dx and
∫

1√
5− x2

dx.
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SÊ½çã®ÊÄ Each can be answered using a straighƞorward applicaƟon of
Theorem 46.∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C.

∫
1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C.

∫
1√

5− x2
= sin−1 x√

5
+ C.

...

Most applicaƟons of Theorem 46 are not as straighƞorward. The next exam-
ples show some common integrals that can sƟll be approached with this theo-
rem.

.. Example 153 ..IntegraƟng by subsƟtuƟon: compleƟng the square
Evaluate

1
x2 − 4x+ 13

dx.

SÊ½çã®ÊÄ IniƟally, this integral seems to have nothing in commonwith
the integrals in Theorem 46. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent funcƟon.

We see this by compleƟng the square on the denominator. We give a brief
reminder of the process here.

Start with a quadraƟc with a leading coefficient of 1. It will have the form of
x2+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, geƫng 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9
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We can now integrate this using the arctangent rule. Technically, we need to
subsƟtute first with u = x− 2, but we can employ Key Idea 10 instead. Thus we
have ∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

...

.. Example 154 Integrals require mulƟple methods

Evaluate
∫

4− x√
16− x2

dx.

SÊ½çã®ÊÄ This integral requires two different methods to evaluate it.
We get to those methods by spliƫng up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.

The first integral is handled using a straighƞorward applicaƟon of Theorem 46;
the second integral is handled by subsƟtuƟon, with u = 16 − x2. We handle
each separately.∫

4√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√

16− x2 + C.
..

SubsƟtuƟon and Definite IntegraƟon

This secƟon has focused on evaluaƟng indefinite integrals as we are learning
a new technique for finding anƟderivaƟves. However, much of the Ɵme integra-
Ɵon is used in the context of a definite integral. Definite integrals that require
subsƟtuƟon can be calculated using the following workflow:
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1. Start with a definite integral
∫ b

a
f(x) dx that requires subsƟtuƟon.

2. Ignore the bounds; use subsƟtuƟon to evaluate
∫

f(x) dx and find an an-

ƟderivaƟve F(x).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣∣∣b
a
= F(b)− F(a).

This workflow works fine, but subsƟtuƟon offers an alternaƟve that is powerful
and amazing (and a liƩle Ɵme saving).

At its heart, (using the notaƟon of Theorem 44) subsƟtuƟon converts inte-
grals of the form

∫
F ′(g(x))g′(x) dx into an integral of the form

∫
F ′(u) du with

the subsƟtuƟon of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subsƟtuƟon is performed.

.

.

.
Theorem 47 SubsƟtuƟon with Definite Integrals

Let f and g be differenƟable funcƟons, where the range of g is an interval
I that contains the domain of F. Then∫ b

a
F′
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 47 states that once you convert to integraƟng with re-
spect to u, you do not need to switch back to integraƟng with respect to x. A
few examples will help one understand.

.. Example 155 ..Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 47.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the laƩer
equaƟon by 2 to get du/3 = dx.

By seƫng u = 3x− 1, we are implicitly staƟng that g(x) = 3x− 1. Theorem
47 states that the new lower bound is g(0) = −1; the new upper bound is
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Figure 6.1: Graphing the areas defined by
the definite integrals of Example 155.
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y = sin x cos x
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Figure 6.2: Graphing the areas defined by
the definite integrals of Example 156.

6.1 SubsƟtuƟon

g(2) = 5. We now evaluate the definite integral:∫ 2

1
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≈ −0.039.

NoƟce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1 tell more of the story. In (a) the area defined by the
original integrand is shaded, whereas in (b) the area defined by the new inte-
grand is shaded. In this parƟcular situaƟon, the areas look very similar; the new
region is “shorter” but “wider,” giving the same area. ...

.. Example 156 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 47.

SÊ½çã®ÊÄ Wesaw the corresponding indefinite integral in Example 143.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx. The new upper bound is
g(π/2) = 0; the new lower bound is g(0) = 1. Note how the lower bound is
actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
u (−1)du

=

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0

= 1/2.

In Figure 6.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 47 guarantees that they have the same area...

Notes:
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Exercises 6.1
Terms and Concepts
1. SubsƟtuƟon “undoes” what derivaƟve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of SubsƟtuƟon.

3.
∫

3x2
(
x3 − 5

)7 dx
4.
∫

(2x− 5)
(
x2 − 5x+ 7

)3 dx
5.
∫

x
(
x2 + 1

)8 dx
6.
∫

(12x+ 14)
(
3x2 + 7x− 1

)5 dx
7.
∫

1
2x+ 7

dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 21, use SubsƟtuƟon to evaluate the indefi-
nite integral involving trigonometric funcƟons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos(3− 6x)dx

17.
∫

sec2(4− x)dx

18.
∫

sec(2x)dx

19.
∫

tan2(x) sec2(x)dx

20.
∫

x cos
(
x2
)
dx

21.
∫

tan2(x)dx

In Exercises 22 – 28, use SubsƟtuƟon to evaluate the indefi-
nite integral involving exponenƟal funcƟons.

22.
∫

e3x−1dx

23.
∫

ex
3
x2dx

24.
∫

ex
2−2x+1(x− 1)dx

25.
∫

ex + 1
ex

dx

26.
∫

ex − e−x

e2x
dx

27.
∫

33xdx

28.
∫

42xdx

In Exercises 29 – 32, use SubsƟtuƟon to evaluate the indefi-
nite integral involving logarithmic funcƟons.

29.
∫

ln x
x

dx

30.
∫

ln2(x)
x

dx

31.
∫ ln

(
x3
)

x
dx

32.
∫

1
x ln (x2)

dx

In Exercises 33 – 38, use SubsƟtuƟon to evaluate the indefi-
nite integral involving raƟonal funcƟons.

33.
∫

x2 + 3x+ 1
x

dx

34.
∫

x3 + x2 + x+ 1
x

dx

35.
∫

x3 − 1
x+ 1

dx

36.
∫

x2 + 2x− 5
x− 3

dx

37.
∫

3x2 − 5x+ 7
x+ 1

dx

38.
∫

x2 + 2x+ 1
x3 + 3x2 + 3x

dx

In Exercises 39 – 48, use SubsƟtuƟon to evaluate the indefi-
nite integral involving inverse trigonometric funcƟons.

39.
∫

7
x2 + 7

dx

40.
∫

3√
9− x2

dx
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41.
∫

14√
5− x2

dx

42.
∫

2
x
√
x2 − 9

dx

43.
∫

5√
x4 − 16x2

dx

44.
∫

x√
1− x4

dx

45.
∫

1
x2 − 2x+ 8

dx

46.
∫

2√
−x2 + 6x+ 7

dx

47.
∫

3√
−x2 + 8x+ 9

dx

48.
∫

5
x2 + 6x+ 34

dx

In Exercises 49 – 73, evaluate the indefinite integral.

49.
∫

x2

(x3 + 3)2
dx

50.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

51.
∫

x√
1− x2

dx

52.
∫

x2 csc2
(
x3 + 1

)
dx

53.
∫

sin(x)
√

cos(x)dx

54.
∫

1
x− 5

dx

55.
∫

7
3x+ 2

dx

56.
∫

3x3 + 4x2 + 2x− 22
x2 + 3x+ 5

dx

57.
∫

2x+ 7
x2 + 7x+ 3

dx

58.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

59.
∫

−x3 + 14x2 − 46x− 7
x2 − 7x+ 1

dx

60.
∫

x
x4 + 81

dx

61.
∫

2
4x2 + 1

dx

62.
∫

1
x
√
4x2 − 1

dx

63.
∫

1√
16− 9x2

dx

64.
∫

3x− 2
x2 − 2x+ 10

dx

65.
∫

7− 2x
x2 + 12x+ 61

dx

66.
∫

x2 + 5x− 2
x2 − 10x+ 32

dx

67.
∫

x3

x2 + 9
dx

68.
∫

x3 − x
x2 + 4x+ 9

dx

69.
∫

sin(x)
cos2(x) + 1

dx

70.
∫

cos(x)
sin2(x) + 1

dx

71.
∫

cos(x)
1− sin2(x)

dx

72.
∫

3x− 3√
x2 − 2x− 6

dx

73.
∫

x− 3√
x2 − 6x+ 8

dx

In Exercises 74 – 81, evaluate the definite integral.

74.
∫ 3

1

1
x− 5

dx

75.
∫ 6

2
x
√
x− 2dx

76.
∫ π/2

−π/2
sin2 x cos x dx

77.
∫ 1

0
2x(1− x2)4 dx

78.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

79.
∫ 1

−1

1
1+ x2

dx

80.
∫ 4

2

1
x2 − 6x+ 10

dx

81.
∫ √

3

1

1√
4− x2

dx
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Chapter 6 Techniques of AnƟdifferenƟaƟon

6.2 IntegraƟon by Parts
Here’s a simple integral that we can’t yet do:∫

x cos x dx.

It’s a simple maƩer to take the derivaƟve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this secƟon introduces
IntegraƟon by Parts, a method of integraƟon that is based on the Product Rule
for derivaƟves. It will enable us to evaluate this integral.

The Product Rule says that if u and v are funcƟons of x, then (uv)′ = u′v+uv′.
For simplicity, we’ve wriƩen u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives∫

(uv)′ dx =
∫
(u′v+ uv′) dx.

By the Fundamental Theoremof Calculus, the leŌ side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u′v dx+
∫

uv′ dx.

Solving for the second integral we have∫
uv′ dx = uv−

∫
u′v dx.

Using differenƟal notaƟon, we can write du = u′(x)dx and dv = v′(x)dx and the
expression above can be wriƩen as follows:∫

u dv = uv−
∫

v du.

This is the IntegraƟon by Parts formula. For reference purposes, we state this in
a theorem.

.

.

.
Theorem 48 IntegraƟon by Parts

Let u and v be differenƟable funcƟons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and ∫ x=b

x=a
u dv = uv

∣∣∣b
a
−
∫ x=b

x=a
v du.

Notes:
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6.2 IntegraƟon by Parts

Let’s try an example to understand our new technique.

.. Example 157 IntegraƟng using IntegraƟon by Parts

Evaluate
∫

x cos x dx.

SÊ½çã®ÊÄ The key to IntegraƟon by Parts is to idenƟfy part of the in-
tegrand as “u” and part as “dv.” Regular pracƟce will help one make good iden-
ƟficaƟons, and later we will introduce some principles that help. For now, let
u = x and dv = cos x dx.

It is generally useful to make a small table of these values as done below.
Right nowwe only know u and dv as shown on the leŌ of Figure 6.3; on the right
we fill in the rest of what we need. If u = x, then du = dx. Since dv = cos x dx,
v is an anƟderivaƟve of cos x. We choose v = sin x.

u = x v = ?
du = ? dv = cos x dx

⇒ u = x v = sin x
du = dx dv = cos x dx

Figure 6.3: Seƫng up IntegraƟon by Parts.

Now subsƟtute all of this into the IntegraƟon by Parts formula, giving∫
x cos x = x sin x−

∫
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is∫
x cos x dx = x sin x+ cos x+ C.

Note how the anƟderivaƟve contains a product, x sin x. This product is what
makes IntegraƟon by Parts necessary. ..

The example above demonstrates how IntegraƟon by Parts works in general.
We try to idenƟfy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the IntegraƟon by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integraƟng x cos x dx, we could integrate sin x dx, which we know how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, I = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = ExponenƟal.

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

If the integrand contains both a logarithmic and an algebraic term, in general
leƫng u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

.. Example 158 IntegraƟng using IntegraƟon by Parts

Evaluate
∫

xex dx.

SÊ½çã®ÊÄ The integrand contains an algebraic term (x) and an expo-
nenƟal term (ex). Our mnemonic suggests leƫng u be the algebraic term, so we
choose u = x and dv = ex dx. Then du = dx and v = ex as indicated by the
tables below.

u = x v = ?
du = ? dv = ex dx

⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.4: Seƫng up IntegraƟon by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The IntegraƟon by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the anƟderivaƟves contain a product term. ..

.. Example 159 ..IntegraƟng using IntegraƟon by Parts

Evaluate
∫

x2 cos x dx.

SÊ½çã®ÊÄ Themnemonic suggests leƫngu = x2 insteadof the trigono-
metric funcƟon, hence dv = cos x dx. Then du = 2x dx and v = sin x as shown
below.

u = x2 v = ?
du = ? dv = cos x dx

⇒ u = x2 v = sin x
du = 2x dx dv = cos x dx

Figure 6.5: Seƫng up IntegraƟon by Parts.

Notes:
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6.2 IntegraƟon by Parts

The IntegraƟon by Parts formula gives∫
x2 cos x dx = x2 sin x−

∫
2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do IntegraƟon by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u = 2x v = ?
du = ? dv = sin x dx

⇒ u = 2x v = − cos x
du = 2 dx dv = sin x dx

Figure 6.6: Seƫng up IntegraƟon by Parts (again).∫
x2 cos x dx = x2 sin x−

(
−2x cos x−

∫
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is∫

x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C....

.. Example 160 ..IntegraƟng using IntegraƟon by Parts

Evaluate
∫

ex cos x dx.

SÊ½çã®ÊÄ This is a classic problem. Our mnemonic suggests leƫng u
be the trigonometric funcƟon instead of the exponenƟal. In this parƟcular ex-
ample, one can let u be either cos x or ex; to demonstrate that we do not have
to follow LIATE, we choose u = ex and hence dv = cos x dx. Then du = ex dx
and v = sin x as shown below.

u = ex v = ?
du = ? dv = cos x dx

⇒ u = ex v = sin x
du = ex dx dv = cos x dx

Figure 6.7: Seƫng up IntegraƟon by Parts.

NoƟce that du is no simpler than u, going against our general rule (but bear
with us). The IntegraƟon by Parts formula yields∫

ex cos x dx = ex sin x−
∫

ex sin x dx.

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

The integral on the right is not much different than the one we started with, so
it seems like we have goƩen nowhere. Let’s sƟck keep working and apply Inte-
graƟon by Parts to the new integral, using u = ex and dv = sin x dx. This leads
us to the following:

u = ex v = ?
du = ? dv = sin x dx

⇒ u = ex v = − cos x
du = ex dx dv = sin x dx

Figure 6.8: Seƫng up IntegraƟon by Parts (again).

The IntegraƟon by Parts formula then gives:∫
ex cos x dx = ex sin x−

(
−ex cos x−

∫
−ex cos x dx

)
= ex sin x+ ex cos x−

∫
ex cos x dx.

It seems we are back right where we started, as the right hand side contains∫
ex cos x dx. But this actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

2
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by 2:∫
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a liƩle and adding the constant of integraƟon, our answer is thus∫
ex cos x dx =

1
2
ex (sin x+ cos x) + C....

.. Example 161 ..IntegraƟng using IntegraƟon by Parts: anƟderivaƟve of ln x

Evaluate
∫

ln x dx.

SÊ½çã®ÊÄ Onemay have noƟced that we have rules for integraƟng the
familiar trigonometric funcƟons and ex, but we have not yet given a rule for in-
tegraƟng ln x. That is because ln x can’t easily be done with any of the rules we
have learned up to this point. But it can be done by a clever applicaƟon of Inte-
graƟon by Parts. Set u = ln x and dv = dx. This is a good, sneaky trick to learn
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6.2 IntegraƟon by Parts

as it can help in other situaƟons. This determines du = (1/x) dx and v = x as
shown below.

u = ln x v = ?
du = ? dv = dx

⇒ u = ln x v = x
du = 1/x dx dv = dx

Figure 6.9: Seƫng up IntegraƟon by Parts.

Puƫng this all together in the IntegraƟon by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
1
x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things get. Its

integral is x+ C and our answer is∫
ln x dx = x ln x− x+ C.

...

.. Example 162 IntegraƟng using Int. by Parts: anƟderivaƟve of arctan x

Evaluate
∫

arctan x dx.

SÊ½çã®ÊÄ The same sneaky trick we used above works here. Let u =
arctan x and dv = dx. Then du = 1/(1 + x2) dx and v = x. The IntegraƟon by
Parts formula gives∫

arctan x dx = x arctan x−
∫

x
1+ x2

dx.

The integral on the right can be done by subsƟtuƟon. Taking u = 1+ x2, we get
du = 2x dx. The integral then becomes∫

arctan x dx = x arctan x− 1
2

∫
1
u
du.

The integral on the right evaluates to ln |u|+ C, which becomes ln(1+ x2) + C.
Therefore, the answer is∫

arctan x dx = x arctan x− ln(1+ x2) + C.
..
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Chapter 6 Techniques of AnƟdifferenƟaƟon

SubsƟtuƟon Before IntegraƟon

When taking derivaƟves, it was common to employ mulƟple rules (such as,
using both theQuoƟent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integraƟon techniques. In
parƟcular, here we illustrate making an “unusual” subsƟtuƟon first before using
IntegraƟon by Parts.

.. Example 163 IntegraƟon by Parts aŌer subsƟtuƟon

Evaluate
∫

cos(ln x) dx.

SÊ½çã®ÊÄ The integrand contains a composiƟon of funcƟons, leading
us to think SubsƟtuƟon would be beneficial. Leƫng u = ln x, we have du =
1/x dx. This seems problemaƟc, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse funcƟons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example 160. Using the result there, we have:∫
cos(ln x) dx =

∫
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C

..

Definite Integrals and IntegraƟon By Parts

So far we have focused only on evaluaƟng indefinite integrals. Of course, we
can use IntegraƟon by Parts to evaluate definite integrals as well, as Theorem
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6.2 IntegraƟon by Parts

48 states. We do so in the next example.

.. Example 164 Definite integraƟon using IntegraƟon by Parts

Evaluate
∫ 2

1
x2 ln x dx.

SÊ½çã®ÊÄ Once again, our mnemonic suggests we let u = ln x. (We
could let u = x2 and dv = ln x dx, as we now know the anƟderivaƟves of ln x.
However, leƫng u = ln x makes our next integral much simpler as it removes
the logarithm from the integral enƟrely.)

So we have u = ln x and dv = x2 dx. We then get du = (1/x) dx and
v = x3/3 as shown below.

u = ln x v = ?

du = ? dv = x2 dx
⇒ u = ln x v = x3/3

du = 1/x dx dv = x2 dx

Figure 6.10: Seƫng up IntegraƟon by Parts.

The IntegraƟon by Parts formula then gives∫ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
≈ 1.07...

In general, IntegraƟon by Parts is useful for integraƟng certain products of
funcƟons, like

∫
xex dx or

∫
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric funcƟons.
As stated before, integraƟon is generally more difficult than derivaƟon. We

are developing tools for handling a large array of integrals, and experience will
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Chapter 6 Techniques of AnƟdifferenƟaƟon

tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals∫

xex dx,
∫

xex
2
dx and

∫
xex

3
dx.

While the first is calculated easilywith IntegraƟonby Parts, the second is best
approached with SubsƟtuƟon. Taking things one step further, the third integral
has no answer in terms of elementary funcƟons, so none of the methods we
learn in calculus will get us the exact answer.

Regardless of these issues, IntegraƟon by Parts is a very useful method, sec-
ond only to subsƟtuƟon.
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Exercises 6.2
Terms and Concepts
1. T/F: IntegraƟon by Parts is useful in evaluaƟng integrands

that contain products of funcƟons.
2. T/F: IntegraƟon by Parts can be thought of as the “opposite

of the Chain Rule.”
3. For what is “LIATE” useful?

Problems
In Exercises 4 – 33, evaluate the given indefinite integral.

4.
∫

x sin x dx

5.
∫

xe−x dx

6.
∫

x2 sin x dx

7.
∫

x3 sin x dx

8.
∫

xex
2
dx

9.
∫

x3ex dx

10.
∫

xe−2x dx

11.
∫

ex sin x dx

12.
∫

e2x cos x dx

13.
∫

e2x sin(3x) dx

14.
∫

e5x cos(5x) dx

15.
∫

sin x cos x dx

16.
∫

sin−1 x dx

17.
∫

tan−1(2x) dx

18.
∫

x tan−1 x dx

19.
∫

sin−1 x dx

20.
∫

x ln x dx

21.
∫

(x− 2) ln x dx

22.
∫

x ln(x− 1) dx

23.
∫

x ln(x2) dx

24.
∫

x2 ln x dx

25.
∫

(ln x)2 dx

26.
∫

(ln(x+ 1))2 dx

27.
∫

x sec2 x dx

28.
∫

x csc2 x dx

29.
∫

x
√
x− 2 dx

30.
∫

x
√
x2 − 2 dx

31.
∫

sec x tan x dx

32.
∫

x sec x tan x dx

33.
∫

x csc x cot x dx

In Exercises 34 – 38, evaluate the indefinite integral aŌer first
making a subsƟtuƟon.

34.
∫

sin(ln x) dx

35.
∫

sin(
√
x) dx

36.
∫

ln(
√
x) dx

37.
∫

e
√

x dx

38.
∫

eln x dx

In Exercises 39 – 47, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 4 – 12.

39.
∫ π

0
x sin x dx

40.
∫ 1

−1
xe−x dx

41.
∫ π/4

−π/4
x2 sin x dx

42.
∫ π/2

−π/2
x3 sin x dx

43.
∫ √

ln 2

0
xex

2
dx

44.
∫ 1

0
x3ex dx

45.
∫ 2

1
xe−2x dx

46.
∫ π

0
ex sin x dx

47.
∫ π/2

−π/2
e2x cos x dx
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6.3 Trigonometric Integrals

FuncƟons involving trigonometric funcƟons are useful as they are good at de-
scribing periodic behavior. This secƟon describes several techniques for finding
anƟderivaƟves of certain combinaƟons of trigonometric funcƟons.

Integrals of the form
∫

sinm x cosn x dx

In learning the technique of SubsƟtuƟon, we saw the integral
∫
sin x cos x dx

in Example 143. The integraƟon was not difficult, and one could easily evaluate
the indefinite integral by leƫng u = sin x or by leƫng u = cos x. This integral is
easy since the power of both sine and cosine is 1.

Wegeneralize this integral and consider integrals of the form
∫
sinm x cosn x dx,

where m, n are nonnegaƟve integers. Our strategy for evaluaƟng these inte-
grals is to use the idenƟty cos2 x + sin2 x = 1 to convert high powers of one
trigonometric funcƟon into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

.

.

.
Key Idea 11 Integrals Involving Powers of Sine and Cosine

Consider
∫

sinm x cosn x dx, wherem, n are nonnegaƟve integers.

1. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite

sinm x = sin2k+1 x = sin2k x sin x = (sin2 x)k sin x = (1− cos2 x)k sin x.

Then ∫
sinm x cosn x dx =

∫
(1− cos2 x)k sin x cosn x dx = −

∫
(1− u2)kun du,

where u = cos x and du = − sin x dx.

2. If n is odd, then using subsƟtuƟons similar to that outlined above we have∫
sinm x cosn x dx =

∫
um(1− u2)k du,

where u = sin x and du = cos x dx.

3. If bothm and n are even, use the power–reducing idenƟƟes

cos2 x =
1+ cos(2x)

2
and sin2 x =

1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.
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We pracƟce applying Key Idea 11 in the next examples.

.. Example 165 IntegraƟng powers of sine and cosine

Evaluate
∫

sin5 x cos8 x dx.

SÊ½çã®ÊÄ The power of the sine term is odd, so we rewrite sin5 x as

sin5 x = sin4 x sin x = (sin2 x)2 sin x = (1− cos2 x)2 sin x.

Our integral is now
∫
(1− cos2 x)2 cos8 x sin x dx. Let u = cos x, hence du =

− sin x dx. Making the subsƟtuƟon and expanding the integrand gives∫
(1−cos2)2 cos8 x sin x dx = −

∫
(1−u2)2u8 du = −

∫ (
1−2u2+u4

)
u8 du = −

∫ (
u8−2u10+u12

)
du.

This final integral is not difficult to evaluate, giving

−
∫ (

u8 − 2u10 + u12
)
du = −1

9
u9 +

2
11

u11 − 1
13

u13 + C

= −1
9
cos9 x+

2
11

cos11 x− 1
13

cos13 x+ C.

..

.. Example 166 ..IntegraƟng powers of sine and cosine

Evaluate
∫

sin5 x cos9 x dx.

SÊ½çã®ÊÄ Thepowers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 11 to either power. We choose to
work with the power of the cosine term since the previous example used the
sine term’s power.

We rewrite cos9 x as

cos9 x = cos8 x cos x

= (cos2 x)4 cos x

= (1− sin2 x)4 cos x

= (1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x) cos x.

We rewrite the integral as∫
sin5 x cos9 x dx =

∫
sin5 x

(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx.
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Figure 6.11: A plot of f(x) and g(x) from
Example 166 and the Technology Note.
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Now subsƟtute and integrate, using u = sin x and du = cos x dx.∫
sin5 x

(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx =

∫
u5(1− 4u2 + 6u4 − 4u6 + u8) du =

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1
6
u6 − 1

2
u8 +

3
5
u10 − 1

3
u12 +

1
14

u14 + C

=
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x+ C
...

Technology Note: The work we are doing here can be a bit tedious, but the
skills it develops (problem solving, algebraic manipulaƟon, etc.) are important.
Nowadays problems of this sort are oŌen solved using a computer algebra sys-
tem. The powerful programMathemaƟca® integrates

∫
sin5 x cos9 x dx as

f(x) = −45 cos(2x)
16384

−5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

− cos(10x)
81920

− cos(12x)
24576

− cos(14x)
114688

,

which clearly has a different form than our answer in Example 166, which is

g(x) =
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x.

Figure 6.11 shows a graph of f and g; they are clearly not equal. We leave it to
the reader to recognize why both answers are correct.

.. Example 167 ..IntegraƟng powers of sine and cosine

Evaluate
∫

cos4 x sin2 x dx.

SÊ½çã®ÊÄ The powers of sine and cosine are both even, so we employ
the power–reducing formulas and algebra as follows.∫

cos4 x sin2 x dx =
∫ (

1+ cos(2x)
2

)2(1− cos(2x)
2

)
dx

=

∫
1+ 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

The cos(2x) term is easy to integrate, especially with Key Idea 10. The cos2(2x)
term is another trigonometric integral with an even power, requiring the power–
reducing formula again. The cos3(2x) term is a cosine funcƟon with an odd
power, requiring a subsƟtuƟon as done before. We integrate each in turn below.
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∫
cos(2x) dx =

1
2
sin(2x) + C.

∫
cos2(2x) dx =

∫
1+ cos(4x)

2
dx =

1
2
(
x+

1
4
sin(4x)

)
+ C.

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x) =
(
1− sin2(2x)

)
cos(2x).

Leƫng u = sin(2x), we have du = 2 cos(2x) dx, hence∫
cos3(2x) dx =

∫ (
1− sin2(2x)

)
cos(2x) dx

=

∫
1
2
(1− u2) du

=
1
2

(
u− 1

3
u3
)
+ C

=
1
2

(
sin(2x)− 1

3
sin3(2x)

)
+ C

Puƫng all the pieces together, we have∫
cos4 x sin2 x dx =

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1
8

[
x+

1
2
sin(2x)− 1

2
(
x+

1
4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1
8

[1
2
x− 1

8
sin(4x) +

1
6
sin3(2x)

]
+ C

...

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx,

and
∫

sin(mx) cos(nx) dx.

FuncƟons that contain products of sines and cosines of differing periods are
important in many applicaƟons including the analysis of sound waves. Integrals
of the form∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx and
∫

sin(mx) cos(nx) dx

Notes:
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are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
1
2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1
2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]
sin(mx) cos(nx) =

1
2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
.. Example 168 IntegraƟng products of sin(mx) and cos(nx)

Evaluate
∫

sin(5x) cos(2x) dx.

SÊ½çã®ÊÄ The applicaƟon of the formula and subsequent integraƟon
are straighƞorward:∫

sin(5x) cos(2x) dx =
∫

1
2

[
sin(3x) + sin(7x)

]
dx

= −1
6
cos(3x)− 1

14
cos(7x) + C

..

Integrals of the form
∫

tanm x secn x dx.

When evaluaƟng integrals of the form
∫
sinm x cosn x dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise–versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a funcƟon using pow-
ers of cos x, leading to an easy subsƟtuƟon.

The same basic strategy applies to integrals of the form
∫
tanm x secn x dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan x) = sec2 x,

• d
dx (sec x) = sec x tan x , and

• 1+ tan2 x = sec2 x (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec2 x term with the re-
maining secant power even, or if a sec x tan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple subsƟtuƟon. This strategy is outlined in the following Key Idea.
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6.3 Trigonometric Integrals

.

.

.
Key Idea 12 Integrals Involving Powers of Tangent and Secant

Consider
∫

tanm x secn x dx, wherem, n are nonnegaƟve integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn x as

secn x = sec2k x = sec2k−2 x sec2 x = (1+ tan2 x)k−1 sec2 x.

Then ∫
tanm x secn x dx =

∫
tanm x(1+ tan2 x)k−1 sec2 x dx =

∫
um(1+ u2)k−1 du,

where u = tan x and du = sec2 x dx.

2. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite tanm x secn x as

tanm x secn x = tan2k+1 x secn x = tan2k x secn−1 x sec x tan x = (sec2 x− 1)k secn−1 x sec x tan x.

Then ∫
tanm x secn x dx =

∫
(sec2 x− 1)k secn−1 x sec x tan x dx =

∫
(u2 − 1)kun−1 du,

where u = sec x and du = sec x tan x dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm x to (sec2 x− 1)k. Expand
the new integrand and use IntegraƟon By Parts, with dv = sec2 x dx.

4. Ifm is even and n = 0, rewrite tanm x as

tanm x = tanm−2 x tan2 x = tanm−2 x(sec2 x− 1) = tanm−2 sec2 x− tanm−2 x.

So ∫
tanm x dx =

∫
tanm−2 sec2 x dx︸ ︷︷ ︸
apply rule #1

−
∫

tanm−2 x dx︸ ︷︷ ︸
apply rule #4 again

.

The techniques described in items1 and2of Key Idea 12 are relaƟvely straight-
forward, but the techniques in items 3 and 4 can be rather tedious. A few exam-
ples will help with these methods.
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.. Example 169 IntegraƟng powers of tangent and secant

Evaluate
∫

tan2 x sec6 x dx.

SÊ½çã®ÊÄ Since the power of secant is even, we use rule #1 from Key
Idea 12 and pull out a sec2 x in the integrand. We convert the remaining powers
of secant into powers of tangent.∫

tan2 x sec6 x dx =
∫

tan2 x sec4 x sec2 x dx

=

∫
tan2 x

(
1+ tan2 x

)2 sec2 x dx
Now subsƟtute, with u = tan x, with du = sec2 x dx.

=

∫
u2
(
1+ u2

)2 du
We leave the integraƟon and subsequent subsƟtuƟon to the reader. The final
answer is

=
1
3
tan3 x+

2
5
tan5 x+

1
7
tan7 x+ C.

..

.. Example 170 ..IntegraƟng powers of tangent and secant

Evaluate
∫

sec3 x dx.

SÊ½çã®ÊÄ We apply rule #3 from Key Idea 12 as the power of secant is
odd and the power of tangent is even (0 is an even number). We use IntegraƟon
by Parts; the rule suggests leƫng dv = sec2 x dx, meaning that u = sec x.

u = sec x v = ?

du = ? dv = sec2 x dx
⇒ u = sec x v = tan x

du = sec x tan x dx dv = sec2 x dx

Figure 6.12: Seƫng up IntegraƟon by Parts.

Employing IntegraƟon by Parts, we have∫
sec3 x dx =

∫
sec x︸︷︷︸

u

· sec2 x dx︸ ︷︷ ︸
dv

= sec x tan x−
∫

sec x tan2 x dx.
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This new integral also requires applying rule #3 of Key Idea 12:

= sec x tan x−
∫

sec x
(
sec2 x− 1

)
dx

= sec x tan x−
∫

sec3 x dx+
∫

sec x dx

= sec x tan x−
∫

sec3 x dx+ ln | sec x+ tan x|

In previous applicaƟons of IntegraƟon by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding

∫
sec3 x dx to

both sides, giving:

2
∫

sec3 x dx = sec x tan x+ ln | sec x+ tan x|∫
sec3 x dx =

1
2

(
sec x tan x+ ln | sec x+ tan x|

)
+ C

...

We give one more example.

.. Example 171 ..IntegraƟng powers of tangent and secant

Evaluate
∫

tan6 x dx.

SÊ½çã®ÊÄ We employ rule #4 of Key Idea 12.∫
tan6 x dx =

∫
tan4 x tan2 x dx

=

∫
tan4 x

(
sec2 x− 1

)
dx

=

∫
tan4 x sec2 x dx−

∫
tan4 x dx

Integrate the first integral with subsƟtuƟon, u = tan x; integrate the second by
employing rule #4 again.

=
1
5
tan5 x−

∫
tan2 x tan2 x dx

=
1
5
tan5 x−

∫
tan2 x

(
sec2 x− 1

)
dx

=
1
5
tan5 x−

∫
tan2 x sec2 x dx+

∫
tan2 x dx
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Again, use subsƟtuƟon for the first integral and rule #4 for the second.

=
1
5
tan5 x− 1

3
tan3 x+

∫ (
sec2 x− 1

)
dx

=
1
5
tan5 x− 1

3
tan3 x+ tan x− x+ C

...
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Exercises 6.3
Terms and Concepts

1. T/F:
∫

sin2 x cos2 x dx cannot be evaluated using the tech-

niques described in this secƟon since both powers of sin x
and cos x are even.

2. T/F:
∫

sin3 x cos3 x dx cannot be evaluated using the tech-

niques described in this secƟon since both powers of sin x
and cos x are odd.

3. T/F: This secƟon addresses how to evaluate indefinite inte-

grals such as
∫

sin5 x tan3 x dx.

Problems
In Exercises 4 – 26, evaluate the indefinite integral.

4.
∫

sin x cos4 x dx

5.
∫

sin3 x cos x dx

6.
∫

sin3 x cos2 x dx

7.
∫

sin3 x cos3 x dx

8.
∫

sin6 x cos5 x dx

9.
∫

sin2 x cos7 x dx

10.
∫

sin2 x cos2 x dx

11.
∫

sin(5x) cos(3x) dx

12.
∫

sin(x) cos(2x) dx

13.
∫

sin(3x) sin(7x) dx

14.
∫

sin(πx) sin(2πx) dx

15.
∫

cos(x) cos(2x) dx

16.
∫

cos
(π
2
x
)
cos(πx) dx

17.
∫

tan4 x sec2 x dx

18.
∫

tan2 x sec4 x dx

19.
∫

tan3 x sec4 x dx

20.
∫

tan3 x sec2 x dx

21.
∫

tan3 x sec3 x dx

22.
∫

tan5 x sec5 x dx

23.
∫

tan4 x dx

24.
∫

sec5 x dx

25.
∫

tan2 x sec x dx

26.
∫

tan2 x sec3 x dx

In Exercises 27 – 33, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

27.
∫ π

0
sin x cos4 x dx

28.
∫ π

−π

sin3 x cos x dx

29.
∫ π/2

−π/2
sin2 x cos7 x dx

30.
∫ π/2

0
sin(5x) cos(3x) dx

31.
∫ π/2

−π/2
cos(x) cos(2x) dx

32.
∫ π/4

0
tan4 x sec2 x dx

33.
∫ π/4

−π/4
tan2 x sec4 x dx
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6.4 Trigonometric SubsƟtuƟon
In SecƟon 5.2 we defined the definite integral as the “signed area under the
curve.” In that secƟon we had not yet learned the Fundamental Theorem of
Calculus, so we evaluated special definite integrals which described nice, geo-
metric shapes. For instance, we were able to evaluate∫ 3

−3

√
9− x2 dx =

9π
2

(6.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integraƟon techniques, including Sub-

sƟtuƟon and IntegraƟon by Parts, yet we are sƟll unable to evaluate the above
integral without resorƟng to a geometric interpretaƟon. This secƟon introduces
Trigonometric SubsƟtuƟon, amethod of integraƟon that fills this gap in our inte-
graƟon skill. This techniqueworks on the sameprinciple as SubsƟtuƟon as found
in SecƟon 6.1, though it can feel “backward.” In SecƟon 6.1, we set u = f(x), for
some funcƟon f, and replaced f(x) with u. In this secƟon, we will set x = f(θ),
where f is a trigonometric funcƟon, then replace x with f(θ).

We start by demonstraƟng this method in evaluaƟng the integral in (6.1).
AŌer the example, we will generalize the method and give more examples.

.. Example 172 ..Using Trigonometric SubsƟtuƟon

Evaluate
∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ We begin by noƟng that 9 sin2 θ + 9 cos2 θ = 9, and hence
9 cos2 θ = 9−9 sin2 θ. If we let x = 3 sin θ, then 9−x2 = 9−9 sin2 θ = 9 cos2 θ.

Seƫng x = 3 sin θ gives dx = 3 cos θ dθ. We are almost ready to subsƟtute.
We also wish to change our bounds of integraƟon. The bound x = −3 corre-
sponds to θ = −π/2 (for when θ = −π/2, x = 3 sin θ = −3). Likewise, the
bound of x = 3 is replaced by the bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2 θ(3 cos θ) dθ

=

∫ π/2

−π/2
3
√
9 cos2 θ cos θ dθ

=

∫ π/2

−π/2
3|3 cos θ| cos θ dθ.

On [−π/2, π/2], cos θ is always posiƟve, so we can drop the absolute value bars,
then employ a power–reducing formula:
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=

∫ π/2

−π/2
9 cos2 θ dθ

=

∫ π/2

−π/2

9
2
(
1+ cos(2θ)

)
dθ

=
9
2
(
θ +

1
2
sin(2θ)

)∣∣∣∣∣
π/2

−π/2

=
9
2
π.

This matches our answer from before. ...

We now describe in detail Trigonometric SubsƟtuƟon. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples.

.

.

.
Key Idea 13 Trigonometric SubsƟtuƟon

(a) For integrands containing
√
a2 − x2:

Let x = a sin θ, dx = a cos θ dθ

Thus θ = sin−1(x/a), for−π/2 ≤ θ ≤ π/2.

On this interval, cos θ ≥ 0, so
√
a2 − x2 = a cos θ

.. √
a2 − x2

.

x

.

a

. θ

(b) For integrands containing
√
x2 + a2:

Let x = a tan θ, dx = a sec2 θ dθ

Thus θ = tan−1(x/a), for−π/2 < θ < π/2.

On this interval, sec θ > 0, so
√
x2 + a2 = a sec θ

..
a

.

x

.

√ x2 +
a2

. θ

(c) For integrands containing
√
x2 − a2:

Let x = a sec θ, dx = a sec θ tan θ dθ

Thus θ = sec−1(x/a). If x/a ≥ 1, then 0 ≤ θ < π/2;
if x/a ≤ −1, then π/2 < θ ≤ π.

We restrict our work to where x ≥ a, so x/a ≥ 1, and
0 ≤ θ < π/2. On this interval, tan θ ≥ 0, so
√
x2 − a2 = a tan θ

..
a

.

√
x2 − a2

.

x

. θ
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.. Example 173 Using Trigonometric SubsƟtuƟon

Evaluate
∫

1√
5+ x2

dx.

SÊ½çã®ÊÄ Using Key Idea 13(b), we recognize a =
√
5 and set x =√

5 tan θ. This makes dx =
√
5 sec2 θ dθ. We will use the fact that

√
5+ x2 =√

5+ 5 tan2 θ =
√
5 sec2 θ =

√
5 sec θ. SubsƟtuƟng, we have:∫

1√
5+ x2

dx =
∫

1√
5+ 5 tan2 θ

√
5 sec2 θ dθ

=

∫ √
5 sec2 θ√
5 sec θ

dθ

=

∫
sec θ dθ

= ln
∣∣ sec θ + tan θ

∣∣+ C.

While the integraƟon steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of θ. We must
convert back to x.

The reference triangle given in Key Idea 13(b) helps. With x =
√
5 tan θ, we

have

tan θ =
x√
5

and sec θ =

√
x2 + 5√

5
.

This gives ∫
1√

5+ x2
dx = ln

∣∣ sec θ + tan θ
∣∣+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic idenƟty to simplify
it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5

(√
x2 + 5+ x

)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣√x2 + 5+ x

∣∣+ C

= ln
∣∣√x2 + 5+ x

∣∣+ C,

where the ln
(
1/

√
5
)
term is absorbed into the constant C. (In SecƟon 6.6 we

will learn another way of approaching this problem.) ..
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.. Example 174 ..Using Trigonometric SubsƟtuƟon

Evaluate
∫ √

4x2 − 1 dx.

SÊ½çã®ÊÄ Westart by rewriƟng the integrand so that it looks like
√
x2 − a2

for some value of a:

√
4x2 − 1 =

√
4
(
x2 − 1

4

)

= 2

√
x2 −

(
1
2

)2

.

Sowe have a = 1/2, and following Key Idea 13(c), we set x = 1
2 sec θ, and hence

dx = 1
2 sec θ tan θ dθ. We now rewrite the integral with these subsƟtuƟons:

∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1
2

)2

dx

=

∫
2
√

1
4
sec2 θ − 1

4

(
1
2
sec θ tan θ

)
dθ

=

∫ √
1
4
(sec2 θ − 1)

(
sec θ tan θ

)
dθ

=

∫ √
1
4
tan2 θ

(
sec θ tan θ

)
dθ

=

∫
1
2
tan2 θ sec θ dθ

=
1
2

∫ (
sec2 θ − 1

)
sec θ dθ

=
1
2

∫ (
sec3 θ − sec θ

)
dθ.

We integrated sec3 θ in Example 170, finding its anƟderivaƟves to be

∫
sec3 θ dθ =

1
2

(
sec θ tan θ + ln | sec θ + tan θ|

)
+ C.
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Thus∫ √
4x2 − 1 dx =

1
2

∫ (
sec3 θ − sec θ

)
dθ

=
1
2

(
1
2

(
sec θ tan θ + ln | sec θ + tan θ|

)
− ln | sec θ + tan θ|

)
+ C

=
1
4
(sec θ tan θ − ln | sec θ + tan θ|) + C.

We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of θ. We need to rewrite our answer in terms
of x. With a = 1/2, and x = 1

2 sec θ, the reference triangle in Key Idea 13(c)
shows that

tan θ =
√

x2 − 1/4/(1/2) = 2
√

x2 − 1/4 and sec θ = 2x.

Thus

1
4
(
sec θ tan θ − ln

∣∣ sec θ + tan θ
∣∣)+ C =

1
4
(
2x · 2

√
x2 − 1/4− ln

∣∣2x+ 2
√

x2 − 1/4
∣∣)+ C

=
1
4

(
4x
√

x2 − 1/4− ln
∣∣2x+ 2

√
x2 − 1/4

∣∣)+ C.

The final answer is given in the last line above, repeated here:∫ √
4x2 − 1 dx =

1
4

(
4x
√

x2 − 1/4− ln
∣∣2x+ 2

√
x2 − 1/4

∣∣)+ C.

...

.. Example 175 ..Using Trigonometric SubsƟtuƟon

Evaluate
∫ √

4− x2

x2
dx.

SÊ½çã®ÊÄ We use Key Idea 13(a) with a = 2, x = 2 sin θ, dx = 2 cos θ
and hence

√
4− x2 = 2 cos θ. This gives∫ √

4− x2

x2
dx =

∫
2 cos θ
4 sin2 θ

(2 cos θ) dθ

=

∫
cot2 θ dθ

=

∫
(csc2 θ − 1) dθ

= − cot θ − θ + C.
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We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea 13(a), we have cot θ =

√
4− x2/x and θ = sin−1(x/2). Thus∫ √

4− x2

x2
dx = −

√
4− x2

x
− sin−1

( x
2

)
+ C.

...

Trigonometric SubsƟtuƟon can be applied inmany situaƟons, even those not
of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example, we ap-

ply it to an integral we already know how to handle.

.. Example 176 Using Trigonometric SubsƟtuƟon

Evaluate
∫

1
x2 + 1

dx.

SÊ½çã®ÊÄ Weknow the answer already as tan−1 x+C. Weapply Trigono-
metric SubsƟtuƟon here to show that we get the same answer without inher-
ently relying on knowledge of the derivaƟve of the arctangent funcƟon.

Using Key Idea 13(b), let x = tan θ, dx = sec2 θ dθ and note that x2 + 1 =
tan2 θ + 1 = sec2 θ. Thus∫

1
x2 + 1

dx =
∫

1
sec2 θ

sec2 θ dθ

=

∫
1 dθ

= θ + C.

Since x = tan θ, θ = tan−1 x, and we conclude that
∫

1
x2 + 1

dx = tan−1 x+C. ..

The next example is similar to the previous one in that it does not involve a
square–root. It shows how several techniques and idenƟƟes can be combined
to obtain a soluƟon.

.. Example 177 ..Using Trigonometric SubsƟtuƟon

Evaluate
∫

1
(x2 + 6x+ 10)2

dx.

SÊ½çã®ÊÄ We start by compleƟng the square, then make the subsƟtu-
Ɵon u = x+ 3, followed by the trigonometric subsƟtuƟon of u = tan θ:∫

1
(x2 + 6x+ 10)2

dx =
∫

1
(u2 + 1)2

du.
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Now make the subsƟtuƟon u = tan θ, du = sec2 θ dθ:

=

∫
1

(tan2 θ + 1)2
sec2 θ dθ

=

∫
1

(sec2 θ)2
sec2 θ dθ

=

∫
cos2 θ dθ.

Applying a power reducing formula, we have

=

∫ (
1
2
+

1
2
cos(2θ)

)
dθ

=
1
2
θ +

1
4
sin(2θ) + C. (6.2)

We need to return to the variable x. As u = tan θ, θ = tan−1 u. Using the
idenƟty sin(2θ) = 2 sin θ cos θ and using the reference triangle found in Key
Idea 13(b), we have

1
4
sin(2θ) =

1
2

u√
u2 + 1

· 1√
u2 + 1

=
1
2

u
u2 + 1

.

Finally, we return to xwith the subsƟtuƟon u = x+3. We start with the expres-
sion in EquaƟon (6.2):

1
2
θ +

1
4
sin(2θ) + C =

1
2
tan−1 u+

1
2

u
u2 + 1

+ C

=
1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

StaƟng our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

...

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric SubsƟtuƟon,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converƟng back to x) and then
evaluate using the original bounds. It is much more straighƞorward, though, to
change the bounds as we subsƟtute.
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.. Example 178 Definite integraƟon and Trigonometric SubsƟtuƟon

Evaluate
∫ 5

0

x2√
x2 + 25

dx.

SÊ½çã®ÊÄ Using Key Idea 13(b), we set x = 5 tan θ, dx = 5 sec2 θ dθ,
and note that

√
x2 + 25 = 5 sec θ. As we subsƟtute, we can also change the

bounds of integraƟon.
The lower bound of the original integral is x = 0. As x = 5 tan θ, we solve for

θ and find θ = tan−1(x/5). Thus the new lower bound is θ = tan−1(0) = 0. The
original upper bound is x = 5, thus the new upper bound is θ = tan−1(5/5) =
π/4.

Thus we have∫ 5

0

x2√
x2 + 25

dx =
∫ π/4

0

25 tan2 θ
5 sec θ

5 sec2 θ dθ

= 25
∫ π/4

0
tan2 θ sec θ dθ.

We encountered this indefinite integral in Example 174 where we found∫
tan2 θ sec θ dθ =

1
2
(
sec θ tan θ − ln | sec θ + tan θ|

)
.

So

25
∫ π/4

0
tan2 θ sec θ dθ =

25
2
(
sec θ tan θ − ln | sec θ + tan θ|

)∣∣∣∣∣
π/4

0

=
25
2
(√

2− ln(
√
2+ 1)

)
≈ 6.661...

The following equaliƟes are very usefulwhenevaluaƟng integrals using Trigono-
metric SubsƟtuƟon.

.

.

.
Key Idea 14 Useful EqualiƟes with Trigonometric SubsƟtuƟon

1. sin(2θ) = 2 sin θ cos θ

2. cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

3.
∫

sec3 θ dθ =
1
2

(
sec θ tan θ + ln

∣∣ sec θ + tan θ
∣∣)+ C

4.
∫

cos2 θ dθ =

∫
1
2
(
1+ cos(2θ)

)
dθ =

1
2
(
θ + sin θ cos θ

)
+ C.
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Exercises 6.4
Terms and Concepts
1. Trigonometric SubsƟtuƟon works on the same principles as

IntegraƟon by SubsƟtuƟon, though it can feel “ ”.

2. If one uses Trigonometric SubsƟtuƟon on an integrand con-
taining

√
25− x2, then one should set x = .

3. Consider the Pythagorean IdenƟty sin2 θ + cos2 θ = 1.

(a) What idenƟty is obtained when both sides are di-
vided by cos2 θ?

(b) Use the new idenƟty to simplify 9 tan2 θ + 9.

4. Why does Key Idea 13(a) state that
√
a2 − x2 = a cos θ,

and not |a cos θ|?

Problems
In Exercises 5 – 16, apply Trigonometric SubsƟtuƟon to eval-
uate the indefinite integrals.

5.
∫ √

x2 + 1 dx

6.
∫ √

x2 + 4 dx

7.
∫ √

1− x2 dx

8.
∫ √

9− x2 dx

9.
∫ √

x2 − 1 dx

10.
∫ √

x2 − 16 dx

11.
∫ √

4x2 + 1 dx

12.
∫ √

1− 9x2 dx

13.
∫ √

16x2 − 1 dx

14.
∫

8√
x2 + 2

dx

15.
∫

3√
7− x2

dx

16.
∫

5√
x2 − 8

dx

In Exercises 17 – 26, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric SubsƟtuƟon.

17.
∫ √

x2 − 11
x

dx

18.
∫

1
(x2 + 1)2

dx

19.
∫

x√
x2 − 3

dx

20.
∫

x2
√
1− x2 dx

21.
∫

x
(x2 + 9)3/2

dx

22.
∫

5x2√
x2 − 10

dx

23.
∫

1
(x2 + 4x+ 13)2

dx

24.
∫

x2(1− x2)−3/2 dx

25.
∫ √

5− x2

7x2
dx

26.
∫

x2√
x2 + 3

dx

In Exercises 27 – 32, evaluate the definite integrals by mak-
ing the proper trigonometric subsƟtuƟon and changing the
bounds of integraƟon. (Note: each of the corresponding
indefinite integrals has appeared previously in this Exercise
set.)

27.
∫ 1

−1

√
1− x2 dx

28.
∫ 8

4

√
x2 − 16 dx

29.
∫ 2

0

√
x2 + 4 dx

30.
∫ 1

−1

1
(x2 + 1)2

dx

31.
∫ 1

−1

√
9− x2 dx

32.
∫ 1

−1
x2
√
1− x2 dx
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6.5 ParƟal FracƟon DecomposiƟon

In this secƟonwe invesƟgate the anƟderivaƟves of raƟonal funcƟons. Recall that
raƟonal funcƟons are funcƟons of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= 0. Such funcƟons arise in many contexts, one of which
is the solving of certain fundamental differenƟal equaƟons.

We begin with an example that demonstrates the moƟvaƟon behind this

secƟon. Consider the integral
∫

1
x2 − 1

dx. We do not have a simple formula

for this (if the denominator were x2 + 1, we would recognize the anƟderivaƟve
as being the arctangent funcƟon). It can be solved using Trigonometric SubsƟ-
tuƟon, but note how the integral is easy to evaluate once we realize:

1
x2 − 1

=
1/2
x− 1

− 1/2
x+ 1

.

Thus

∫
1

x2 − 1
dx =

∫
1/2
x− 1

dx−
∫

1/2
x+ 1

dx

=
1
2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This secƟon teaches how to decompose

1
x2 − 1

into
1/2
x− 1

− 1/2
x+ 1

.

We start with a raƟonal funcƟon f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadraƟc terms. The following Key Idea states how to decompose a
raƟonal funcƟon into a sum of raƟonal funcƟons whose denominators are all of
lower degree than q.
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.

.

.
Key Idea 15 ParƟal FracƟon DecomposiƟon

Let
p(x)
q(x)

be a raƟonal funcƟon, where the degree of p is less than the

degree of q.

1. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decomposiƟon of p(x)

q(x)
will contain the sum

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. QuadraƟc Terms: Let x2+bx+ c divide q(x), where (x2+bx+ c)n
is the highest power of x2 + bx + c that divides q(x). Then the
decomposiƟon of p(x)

q(x) will contain the sum

B1x+ C1
x2 + bx+ c

+
B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

To find the coefficients Ai, Bi and Ci:

1. MulƟply all fracƟons by q(x), clearing the denominators. Collect
like terms.

2. Equate the resulƟng coefficients of the powers of x and solve the
resulƟng system of linear equaƟons.

The following examples will demonstrate how to put this Key Idea into prac-
Ɵce. Example 179 stresses the decomposiƟon aspect of the Key Idea.

.. Example 179 ..Decomposing into parƟal fracƟons
Decompose f(x) =

1
(x+ 5)(x− 2)3(x2 + 2x+ 1)(x2 + x+ 7)2

without solving

for the resulƟng coefficients.

SÊ½çã®ÊÄ The denominator is already factored; we need to decom-
pose f(x) properly. Since (x + 5) is a linear term that divides the denominator,
there will be a

A
x+ 5

term in the decomposiƟon.
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As (x− 2)3 divides the denominator, we will have the following terms in the
decomposiƟon:

B
x− 2

,
C

(x− 2)2
and

D
(x− 2)3

.

The x2 + 2x+ 1 term in the denominator results in a
Ex+ F

x2 + 2x+ 1
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+ H
x2 + x+ 7

and
Ix+ J

(x2 + x+ 7)2
.

All together, we have

1
(x+ 5)(x− 2)3(x2 + 2x+ 1)(x2 + x+ 7)2

=
A

x+ 5
+

B
x− 2

+
C

(x− 2)2
+

D
(x− 2)3

+

Ex+ F
x2 + 2x+ 1

+
Gx+ H

x2 + x+ 7
+

Ix+ J
(x2 + x+ 7)2

Solving for the coefficients A, B . . . J would be a bit tedious but not “hard.” ...

.. Example 180 ..Decomposing into parƟal fracƟons
Perform the parƟal fracƟon decomposiƟon of

1
x2 − 1

.

SÊ½çã®ÊÄ The denominator factors into two linear terms: x2 − 1 =
(x− 1)(x+ 1). Thus

1
x2 − 1

=
A

x− 1
+

B
x+ 1

.

To solve for A and B, first mulƟply through by x2 − 1 = (x− 1)(x+ 1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+)

x+ 1
= A(x+ 1) + B(x− 1)
= Ax+ A+ Bx− B

Now collect like terms.

= (A+ B)x+ (A− B).

The next step is key. Note the equality we have:

1 = (A+ B)x+ (A− B).
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Note: EquaƟon 6.3 offers a direct route to
finding the values of A, B and C. Since the
equaƟon holds for all values of x, it holds
in parƟcular when x = 1. However, when
x = 1, the right hand side simplifies to
A(1 + 2)2 = 9A. Since the leŌ hand side
is sƟll 1, we have 1 = 9A. HenceA = 1/9.
Likewise, the equality holds when x =
−2; this leads to the equaƟon 1 = −3C.
Thus C = −1/3.
We can find the value of B by expanding
the terms as shown in the example.
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For clarity’s sake, rewrite the leŌ hand side as

0x+ 1 = (A+ B)x+ (A− B).

On the leŌ, the coefficient of the x term is 0; on the right, it is (A + B). Since
both sides are equal, we must have that 0 = A+ B.

Likewise, on the leŌ, we have a constant term of 1; on the right, the constant
term is (A− B). Therefore we have 1 = A− B.

We have two linear equaƟons with two unknowns. This one is easy to solve
by hand, leading to

A+ B = 0
A− B = 1 ⇒ A = 1/2

B = −1/2 .

Thus
1

x2 − 1
=

1/2
x− 1

− 1/2
x+ 1

.
...

.. Example 181 ..IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

1
(x− 1)(x+ 2)2

dx.

SÊ½çã®ÊÄ Wedecompose the integrand as follows, as described by Key
Idea 15:

1
(x− 1)(x+ 2)2

=
A

x− 1
+

B
x+ 2

+
C

(x+ 2)2
.

To solve for A, B and C, we mulƟply both sides by (x− 1)(x+ 2)2 and collect like
terms:

1 = A(x+ 2)2 + B(x− 1)(x+ 2) + C(x− 1) (6.3)

= Ax2 + 4Ax+ 4A+ Bx2 + Bx− 2B+ Cx− C

= (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

We have

0x2 + 0x+ 1 = (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

leading to the equaƟons

A+ B = 0, 4A+ B+ C = 0 and 4A− 2B− C = 1.

These three equaƟons of three unknowns lead to a unique soluƟon:

A = 1/9, B = −1/9 and C = −1/3.
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Note: The values ofA andB can be quickly
found using the technique described in
the margin of Example 181.

6.5 ParƟal FracƟon DecomposiƟon

Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9
x− 1

dx+
∫

−1/9
x+ 2

dx+
∫

−1/3
(x+ 2)2

dx.

Each can be integrated with a simple subsƟtuƟonwith u = x−1 or x = x+2
(or by directly applying Key Idea 10 as the denominators are linear funcƟons).
The end result is∫

1
(x− 1)(x+ 2)2

dx =
1
9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

...

.. Example 182 ..IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

x3

(x− 5)(x+ 3)
dx.

SÊ½çã®ÊÄ Key Idea 15 presumes that the degree of the numerator is
less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2+

19x+ 30
(x− 5)(x+ 3)

.

Using Key Idea 15, we can rewrite the new raƟonal funcƟon as:

19x+ 30
(x− 5)(x+ 3)

=
A

x− 5
+

B
x+ 3

for appropriate values of A and B. Clearing denominators, we have

19x+ 30 = A(x+ 3) + B(x− 5)
= (A+ B)x+ (3A− 5B).

This implies that:

19 = A+ B
30 = 3A− 5B.

Solving this system of linear equaƟons gives

125/8 = A
27/8 = B.
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We can now integrate.∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2+

125/8
x− 5

+
27/8
x+ 3

)
dx

=
x2

2
+ 2x+

125
8

ln |x− 5|+ 27
8

ln |x+ 3|+ C.
...

.. Example 183 ..IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to evaluate
∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx.

SÊ½çã®ÊÄ The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 15. We have:

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

=
A

x+ 1
+

Bx+ C
x2 + 6x+ 11

.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1)

= (A+ B)x2 + (6A+ B+ C)x+ (11A+ C).

This implies that:

7 = A+ B
31 = 6A+ B+ C
54 = 11A+ C.

Solving this system of linear equaƟons gives the nice result of A = 5, B = 2 and
C = −1. Thus∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx =
∫ (

5
x+ 1

+
2x− 1

x2 + 6x+ 11

)
dx.

The first termof this new integrand is easy to evaluate; it leads to a 5 ln |x+1|
term. The second term is not hard, but takes several steps and uses subsƟtuƟon
techniques.

The integrand
2x− 1

x2 + 6x+ 11
has a quadraƟc in the denominator and a linear

term in the numerator. This leads us to try subsƟtuƟon. Let u = x2+6x+11, so
du = (2x+ 6) dx. The numerator is 2x− 1, not 2x+ 6, but we can get a 2x+ 6
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term in the numerator by adding 0 in the form of “7− 7.”

2x− 1
x2 + 6x+ 11

=
2x− 1+ 7− 7
x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

Wecannow integrate the first termwith subsƟtuƟon, leading to a ln |x2+6x+11|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

7
x2 + 6x+ 11

=
7

(x+ 3)2 + 2
.

An anƟderivaƟve of the laƩer term can be found using Theorem 46 and subsƟ-
tuƟon: ∫

7
x2 + 6x+ 11

dx =
7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

x2 + 6x+ 11
dx

= 5 ln |x+ 1|+ ln |x2 + 6x+ 11| − 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately aŌer seeing the problem.
Rather, given the iniƟal problem, we break it down into smaller problems that
are easier to solve. The final answer is a combinaƟon of the answers of the
smaller problems. ...

Notes:
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Exercises 6.5
Terms and Concepts
1. Fill in the blank: ParƟal FracƟonDecomposiƟon is amethod

of rewriƟng funcƟons.

2. T/F: It is someƟmes necessary to use polynomial division
before using ParƟal FracƟon DecomposiƟon.

3. Decompose
1

x2 − 3x
without solving for the coefficients, as

done in Example 179.

4. Decompose
7− x
x2 − 9

without solving for the coefficients, as
done in Example 179.

5. Decompose
x− 3
x2 − 7

without solving for the coefficients, as
done in Example 179.

6. Decompose
2x+ 5
x3 + 7x

without solving for the coefficients, as
done in Example 179.

Problems
In Exercises 7 – 25, evaluate the indefinite integral.

7.
∫

7x+ 7
x2 + 3x− 10

dx

8.
∫

7x− 2
x2 + x

dx

9.
∫

−4
3x2 − 12

dx

10.
∫

x+ 7
(x+ 5)2

dx

11.
∫

−3x− 20
(x+ 8)2

dx

12.
∫

9x2 + 11x+ 7
x(x+ 1)2

dx

13.
∫

−12x2 − x+ 33
(x− 1)(x+ 3)(3− 2x)

dx

14.
∫

94x2 − 10x
(7x+ 3)(5x− 1)(3x− 1)

dx

15.
∫

x2 + x+ 1
x2 + x− 2

dx

16.
∫

x3

x2 − x− 20
dx

17.
∫

2x2 − 4x+ 6
x2 − 2x+ 3

dx

18.
∫

1
x3 + 2x2 + 3x

dx

19.
∫

x2 + x+ 5
x2 + 4x+ 10

dx

20.
∫

12x2 + 21x+ 3
(x+ 1)(3x2 + 5x− 1)

dx

21.
∫

6x2 + 8x− 4
(x− 3)(x2 + 6x+ 10)

dx

22.
∫

2x2 + x+ 1
(x+ 1)(x2 + 9)

dx

23.
∫

x2 − 20x− 69
(x− 7)(x2 + 2x+ 17)

dx

24.
∫

9x2 − 60x+ 33
(x− 9)(x2 − 2x+ 11)

dx

25.
∫

6x2 + 45x+ 121
(x+ 2)(x2 + 10x+ 27)

dx

In Exercises 26 – 29, evaluate the definite integral.

26.
∫ 2

1

8x+ 21
(x+ 2)(x+ 3)

dx

27.
∫ 5

0

14x+ 6
(3x+ 2)(x+ 4)

dx

28.
∫ 1

−1

x2 + 5x− 5
(x− 10)(x2 + 4x+ 5)

dx

29.
∫ 1

0

x
(x+ 1)(x2 + 2x+ 1)

dx
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Figure 6.13: Using trigonometric func-
Ɵons to define points on a circle and hy-
perbolic funcƟons to define points on a
hyperbola. The area of the shaded re-
gions are included in them.

PronunciaƟon Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”

6.6 Hyperbolic FuncƟons

6.6 Hyperbolic FuncƟons
The hyperbolic funcƟons are a set of funcƟons that have many applicaƟons to
mathemaƟcs, physics, and engineering. Among many other applicaƟons, they
are used to describe the formaƟon of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have applicaƟon to the theory
of special relaƟvity. This secƟon defines the hyperbolic funcƟons and describes
many of their properƟes, especially their usefulness to calculus.

These funcƟons are someƟmes referred to as the “hyperbolic trigonometric
funcƟons” as there are many, many connecƟons between them and the stan-
dard trigonometric funcƟons. Figure 6.13 demonstrates one such connecƟon.
Just as cosine and sine are used to define points on the circle defined by x2+y2 =
1, the funcƟons hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x2 − y2 = 1.

We begin with their definiƟon.

.

.

.
DefiniƟon 23 Hyperbolic FuncƟons

1. cosh x =
ex + e−x

2

2. sinh x =
ex − e−x

2

3. tanh x =
sinh x
cosh x

4. sech x =
1

cosh x

5. csch x =
1

sinh x

6. coth x =
cosh x
sinh x

These hyperbolic funcƟons are graphed in Figure 6.14. In the graphs of cosh x
and sinh x, graphs of ex/2 and e−x/2 are included with dashed lines. As x gets
“large,” cosh x and sinh x each act like ex/2; when x is a large negaƟve number,
cosh x acts like e−x/2 whereas sinh x acts like−e−x/2.

NoƟce the domains of tanh x and sech x are (−∞,∞), whereas both coth x
and csch x have verƟcal asymptotes at x = 0. Also note the ranges of these
funcƟon, especially tanh x: as x → ∞, both sinh x and cosh x approach e−x/2,
hence tanh x approaches 1.

The following example explores some of the properƟes of these funcƟons
that bear remarkable resemblance to the properƟes of their trigonometric coun-
terparts.

Notes:
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Figure 6.14: Graphs of the hyperbolic funcƟons.

.. Example 184 ..Exploring properƟes of hyperbolic funcƟons

Use DefiniƟon 23 to rewrite the following expressions.

1. cosh2 x− sinh2 x

2. tanh2 x+ sech2 x

3. 2 cosh x sinh x

4. d
dx

(
cosh x

)
5. d

dx

(
sinh x

)
6. d

dx

(
tanh x

)

SÊ½çã®ÊÄ
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6.6 Hyperbolic FuncƟons

1. cosh2 x− sinh2 x =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4
4
= 1.

So cosh2 x− sinh2 x = 1.

2. tanh2 x+ sech2 x =
sinh2 x
cosh2 x

+
1

cosh2 x

=
sinh2 x+ 1
cosh2 x

Now use idenƟty from #1.

=
cosh2 x
cosh2 x

= 1

So tanh2 x+ sech2 x = 1.

..

3. 2 cosh x sinh x = 2
(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh x sinh x = sinh(2x).

4.
d
dx
(
cosh x

)
=

d
dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh x

So d
dx

(
cosh x

)
= sinh x.

5.
d
dx
(
sinh x

)
=

d
dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x

So d
dx

(
sinh x

)
= cosh x.

Notes:
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6.
d
dx
(
tanh x

)
=

d
dx

(
sinh x
cosh x

)
=

cosh x cosh x− sinh x sinh x
cosh2 x

=
1

cosh2 x
= sech2 x

So d
dx

(
tanh x

)
= sech2 x.

...

The following Key Idea summarizes many of the important idenƟƟes relaƟng
to hyperbolic funcƟons. Each can be verified by referring back to DefiniƟon 23.

.

.

.
Key Idea 16 Useful Hyperbolic FuncƟon ProperƟes

Basic IdenƟƟes

1. cosh2 x− sinh2 x = 1

2. tanh2 x+ sech2 x = 1

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. sinh 2x = 2 sinh x cosh x

6. cosh2 x =
cosh 2x+ 1

2

7. sinh2 x =
cosh 2x− 1

2

DerivaƟves

1. d
dx

(
cosh x

)
= sinh x

2. d
dx

(
sinh x

)
= cosh x

3. d
dx

(
tanh x

)
= sech2 x

4. d
dx

(
sech x

)
= − sech x tanh x

5. d
dx

(
csch x

)
= − csch x coth x

6. d
dx

(
coth x

)
= − csch2 x

Integrals

1.
∫

cosh x dx = sinh x+ C

2.
∫

sinh x dx = cosh x+ C

3.
∫

tanh x dx = ln(cosh x) + C

4.
∫

coth x dx = ln | sinh x |+ C

We pracƟce using Key Idea 16.

.. Example 185 ..DerivaƟves and integrals of hyperbolic funcƟons
Evaluate the following derivaƟves and integrals.

1.
d
dx
(
cosh 2x

)
2.
∫

sech2(7t− 3) dt

3.
∫ ln 2

0
cosh x dx

Notes:
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SÊ½çã®ÊÄ

1. Using the Chain Rule directly, we have d
dx

(
cosh 2x

)
= 2 sinh 2x.

Just to demonstrate that it works, let’s also use the Basic IdenƟty found in
Key Idea 16: cosh 2x = cosh2 x+ sinh2 x.

d
dx
(
cosh 2x

)
=

d
dx
(
cosh2 x+ sinh2 x

)
= 2 cosh x sinh x+ 2 sinh x cosh x

= 4 cosh x sinh x.

Using another Basic IdenƟty, we can see that 4 cosh x sinh x = 2 sinh 2x.
We get the same answer either way.

2. We employ subsƟtuƟon, with u = 7t − 3 and du = 7dt. Applying Key
Ideas 10 and 16 we have:∫

sech2(7t− 3) dt =
1
7
tanh(7t− 3) + C.

3. ∫ ln 2

0
cosh x dx = sinh x

∣∣∣ln 2
0

= sinh(ln 2)− sinh 0 = sinh(ln 2).

We can simplify this last expression as sinh x is based on exponenƟals:

sinh(ln 2) =
eln 2 − e− ln 2

2
=

2− 1/2
2

=
3
4
.

...

Inverse Hyperbolic FuncƟons

Just as the inverse trigonometric funcƟons are useful in certain integraƟons,
the inverse hyperbolic funcƟons are useful with others. Figure 6.15 shows the
restricƟons on the domains to make each funcƟon one-to-one and the resulƟng
domains and ranges of their inverse funcƟons. Their graphs are shown in Figure
6.16.

Because the hyperbolic funcƟons are defined in terms of exponenƟal func-
Ɵons, their inverses can be expressed in terms of logarithms as shown in Key Idea
17. It is oŌen more convenient to refer to sinh−1 x than to ln

(
x+

√
x2 + 1

)
, es-

pecially when one is working on theory and does not need to compute actual
values. On the other hand, when computaƟons are needed, technology is oŌen
helpful but many hand-held calculators lack a convenient sinh−1 x buƩon. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situaƟon, the logarithmic representaƟon is useful.

Notes:
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FuncƟon Domain Range
cosh x [0,∞) [1,∞)
sinh x (−∞,∞) (−∞,∞)
tanh x (−∞,∞) (−1, 1)
sech x [0,∞) (0, 1]
csch x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth x (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞)

FuncƟon Domain Range
cosh−1 x [1,∞) [0,∞)
sinh−1 x [−∞,∞) [−∞,∞)
tanh−1 x (−1, 1) (−∞,∞)
sech−1 x (0, 1] [0,∞)
csch−1 x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth−1 x (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

Figure 6.15: Domains and ranges of the hyperbolic and inverse hyperbolic funcƟons.
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Figure 6.16: Graphs of the hyperbolic funcƟons and their inverses.

.

.

.
Key Idea 17 Logarithmic definiƟons of Inverse Hyperbolic FuncƟons

1. cosh−1 x = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1 x =
1
2
ln
(
1+ x
1− x

)
; |x| < 1

3. sech−1 x = ln

(
1+

√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1 x = ln
(
x+

√
x2 + 1

)
5. coth−1 x =

1
2
ln
(
x+ 1
x− 1

)
; |x| > 1

6. csch−1 x = ln

(
1
x
+

√
1+ x2

|x|

)
; x ̸= 0

Notes:
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The following Key Ideas give the derivaƟves and integrals relaƟng to the in-
verse hyperbolic funcƟons. In Key Idea 19, both the inverse hyperbolic and log-
arithmic funcƟon representaƟons of the anƟderivaƟve are given, based on Key
Idea 17. Again, these laƩer funcƟons are oŌen more useful than the former.
Note how inverse hyperbolic funcƟons can be used to solve integrals we used
Trigonometric SubsƟtuƟon to solve in SecƟon 6.4.

.

.

.
Key Idea 18 DerivaƟves Involving Inverse Hyperbolic FuncƟons

1.
d
dx
(
cosh−1 x

)
=

1√
x2 − 1

; x > 1

2.
d
dx
(
sinh−1 x

)
=

1√
x2 + 1

3.
d
dx
(
tanh−1 x

)
=

1
1− x2

; |x| < 1

4.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

; 0 < x < 1

5.
d
dx
(
csch−1 x

)
=

−1
|x|
√
1+ x2

; x ̸= 0

6.
d
dx
(
coth−1 x

)
=

1
1− x2

; |x| > 1

.

.

.
Key Idea 19 Integrals Involving Inverse Hyperbolic FuncƟons

1.
∫

1√
x2 − a2

dx = cosh−1
( x
a

)
+ C; 0 < a < x = ln

∣∣∣x+√x2 − a2
∣∣∣+ C

2.
∫

1√
x2 + a2

dx = sinh−1
( x
a

)
+ C; a > 0 = ln

∣∣∣x+√x2 + a2
∣∣∣+ C

3.
∫

1
a2 − x2

dx =


1
a tanh

−1 ( x
a

)
+ C x2 < a2

1
a coth

−1 ( x
a

)
+ C a2 < x2

=
1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

4.
∫

1
x
√
a2 − x2

dx = −1
a
sech−1

( x
a

)
+ C; 0 < x < a =

1
a
ln
(

x
a+

√
a2 − x2

)
+ C

5.
∫

1
x
√
x2 + a2

dx = −1
a
csch−1

∣∣∣ xa ∣∣∣+ C; x ̸= 0, a > 0 =
1
a
ln
∣∣∣∣ x
a+

√
a2 + x2

∣∣∣∣+ C

We pracƟce using the derivaƟve and integral formulas in the following ex-
ample.

Notes:
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.. Example 186 ..DerivaƟves and integrals involving inverse hyperbolic func-
Ɵons
Evaluate the following.

1.
d
dx

[
cosh−1

(
3x− 2

5

)]
2.
∫

1
x2 − 1

dx

3.
∫

1√
9x2 + 10

dx

SÊ½çã®ÊÄ

1. Applying Key Idea 18 with the Chain Rule gives:

d
dx

[
cosh−1

(
3x− 2

5

)]
=

1√( 3x−2
5

)
− 1

· 3
5
.

2. MulƟplying the numerator anddenominator by (−1) gives:
∫

1
x2 − 1

dx =∫
−1

1− x2
dx. The second integral can be solved with a direct applicaƟon

of item #3 from Key Idea 19, with a = 1. Thus∫
1

x2 − 1
dx = −

∫
1

1− x2
dx

=

 − tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1
2
ln
∣∣∣∣x+ 1
x− 1

∣∣∣∣+ C

=
1
2
ln
∣∣∣∣x− 1
x+ 1

∣∣∣∣+ C. (6.4)

We should note that this exact problem was solved at the beginning of
SecƟon 6.5. In that example the answer was given as 1

2 ln |x−1|− 1
2 ln |x+

1|+ C. Note that this is equivalent to the answer given in EquaƟon 6.4, as
ln(a/b) = ln a− ln b.

3. This requires a subsƟtuƟon, then item #2 of Key Idea 19 can be applied.
Let u = 3x, hence du = 3dx. We have∫

1√
9x2 + 10

dx =
1
3

∫
1√

u2 + 10
du.

Notes:
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6.6 Hyperbolic FuncƟons

Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1
3
sinh−1

(
3x√
10

)
+ C

=
1
3
ln
∣∣∣3x+√9x2 + 10

∣∣∣+ C.
...

Notes:
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Exercises 6.6
Terms and Concepts

1. In Key Idea 16, the equaƟon
∫

tanh x dx = ln(cosh x)+C is

given. Why is “ln | cosh x|” not used – i.e., why are absolute
values not necessary?

2. The hyperbolic funcƟons are used to define points on the
right hand porƟon of the hyperbola x2 − y2 = 1, as shown
in Figure 6.13. How can we use the hyperbolic funcƟons to
define points on the leŌ hand porƟon of the hyperbola?

Problems
In Exercises 3 – 10, verify the given idenƟty using DefiniƟon
23, as done in Example 184.

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. cosh2 x =
cosh 2x+ 1

2

6. sinh2 x =
cosh 2x− 1

2

7.
d
dx

[sech x] = − sech x tanh x

8.
d
dx

[coth x] = − csch2 x

9.
∫

tanh x dx = ln(cosh x) + C

10.
∫

coth x dx = ln | sinh x|+ C

In Exercises 11 – 21, find the derivaƟve of the given funcƟon.

11. f(x) = cosh 2x

12. f(x) = tanh(x2)

13. f(x) = ln(sinh x)

14. f(x) = sinh x cosh x

15. f(x) = x sinh x− cosh x

16. f(x) = sech−1(x2)

17. f(x) = sinh−1(3x)

18. f(x) = cosh−1(2x2)

19. f(x) = tanh−1(x+ 5)

20. f(x) = tanh−1(cos x)

21. f(x) = cosh−1(sec x)

In Exercises 22 – 26, find the equaƟon of the line tangent to
the funcƟon at the given x-value.

22. f(x) = sinh x at x = 0

23. f(x) = cosh x at x = ln 2

24. f(x) = sech2 x at x = ln 3

25. f(x) = sinh−1 x at x = 0

26. f(x) = cosh−1 x at x =
√
2

In Exercises 27 – 40, evaluate the given indefinite integral.

27.
∫

tanh(2x) dx

28.
∫

cosh(3x− 7) dx

29.
∫

sinh x cosh x dx

30.
∫

x cosh x dx

31.
∫

x sinh x dx

32.
∫

1
9− x2

dx

33.
∫

2x√
x4 − 4

dx

34.
∫ √

x√
1+ x3

dx

35.
∫

1
x4 − 16

dx

36.
∫

1
x2 + x

dx

37.
∫

ex

e2x + 1
dx

38.
∫

sinh−1 x dx

39.
∫

tanh−1 x dx

40.
∫

sech x dx (Hint: muƟply by cosh x
cosh x ; set u = sinh x.)

In Exercises 41 – 43, evaluate the given definite integral.

41.
∫ 1

−1
sinh x dx

42.
∫ ln 2

− ln 2
cosh x dx

43.
∫ 1

0
tanh−1 x dx

312



6.7 L’Hôpital’s Rule

6.7 L’Hôpital’s Rule
While this chapter is devoted to learning techniques of integraƟon, this secƟon
is not about integraƟon. Rather, it is concerned with a technique of evaluaƟng
certain limits that will be useful in the following secƟon, where integraƟon is
once more discussed.

Our treatment of limits exposedus to “0/0”, an indeterminate form. If lim
x→c

f(x) =
0 and lim

x→c
g(x) = 0, we do not conclude that lim

x→c
f(x)/g(x) is 0/0; rather, we use

0/0 as notaƟon to describe the fact that both the numerator and denominator
approach 0. The expression 0/0 has no numeric value; other workmust be done
to evaluate the limit.

Other indeterminate forms exist; they are: ∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quanƟty is growing
without bound and is being divided by another quanƟty that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “mulƟply zero by infinity.” Instead,
it means “one quanƟty is shrinking to zero, and is being mulƟplied by a quanƟty
that is growing without bound.” We cannot determine from such a descripƟon
what the result of such a limit will be.

This secƟon introduces l’Hôpital’s Rule, amethod of resolving limits that pro-
duce the indeterminate forms 0/0 and ∞/∞. We’ll also show how algebraic
manipulaƟon can be used to convert other indeterminate expressions into one
of these two form so that our new rule can be applied.

.

.

.
Theorem 49 L’Hôpital’s Rule, Part 1

Let lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, where f and g are differenƟable func-
Ɵons on anopen interval I containing c, and g′(x) ̸= 0on I except possibly
at c. Then

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

We demonstrate the use of l’Hôpital’s Rule in the following examples; we
will oŌen use “LHR” as an abbreviaƟon of “l’Hôpital’s Rule.”

Notes:
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.. Example 187 Using l’Hôpital’s Rule
Evaluate the following limits, using l’Hôpital’s Rule as needed.

1. lim
x→0

sin x
x

2. lim
x→1

√
x+ 3− 2
1− x

3. lim
x→0

x2

1− cos x

4. lim
x→2

x2 + x− 6
x2 − 3x+ 2

SÊ½çã®ÊÄ

1. We proved this limit is 1 in Example 12 using the Squeeze Theorem. Here
we use l’Hôpital’s Rule to show its power.

lim
x→0

sin x
x

by LHR
= lim

x→0

cos x
1

= 1.

2. lim
x→1

√
x+ 3− 2
1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3. lim
x→0

x2

1− cos x

by LHR
= lim

x→0

2x
sin x

.

This laƩer limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply l’Hôpital’s Rule again.

lim
x→0

2x
sin x

by LHR
=

2
cos x

= 2.

Thus lim
x→0

x2

1− cos x
= 2.

4. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

lim
x→2

x2 + x− 6
x2 − 3x+ 2

= lim
x→2

(x− 2)(x+ 3)
(x− 2)(x− 1)

= lim
x→2

x+ 3
x− 1

= 5.

We now show how to solve this using l’Hôpital’s Rule.

lim
x→2

x2 + x− 6
x2 − 3x+ 2

by LHR
= lim

x→2

2x+ 1
2x− 3

= 5.
..

The following theorem extends our iniƟal version of l’Hôpital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Notes:
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.

.

.
Theorem 50 L’Hôpital’s Rule, Part 2

1. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are differ-
enƟable on an open interval I containing a. Then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

2. Let f and g be differenƟable funcƟons on the open interval (a,∞)
for some value a, where g′(x) ̸= 0 on (a,∞) and lim

x→∞
f(x)/g(x)

returns either 0/0 or∞/∞. Then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

.

A similar statement can be made for limits where x approaches
−∞.

.. Example 188 Using l’Hôpital’s Rule with limits involving∞
Evaluate the following limits.

1. lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

2. lim
x→∞

ex

x3
.

SÊ½çã®ÊÄ

1. We can evaluate this limit already using Theorem 11; the answer is 3/4.
We apply l’Hôpital’s Rule to demonstrate its applicability.

lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100
8x+ 5

by LHR
= lim

x→∞

6
8
=

3
4
.

2. lim
x→∞

ex

x3
by LHR
= lim

x→∞

ex

3x2
by LHR
= lim

x→∞

ex

6x

by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x approaches ∞,
the expression ex/x3 grows without bound. We can infer from this that
ex grows “faster” than x3; as x gets large, ex is far larger than x3. (This
has important implicaƟons in compuƟng when considering efficiency of
algorithms.)

..

Notes:
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Indeterminate Forms 0 · ∞ and∞−∞

L’Hôpital’s Rule can only be applied to raƟos of funcƟons. When faced with
an indeterminate form such as 0 ·∞ or∞−∞, we can someƟmes apply algebra
to rewrite the limit so that l’Hôpital’s Rule can be applied. We demonstrate the
general idea in the next example.

.. Example 189 ..Applying l’Hôpital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

ln(x+ 1)− ln x

4. lim
x→∞

x2 − ex

SÊ½çã®ÊÄ

1. As x → 0+, x → 0 and e1/x → ∞. Thus we have the indeterminate form

0 · ∞. We rewrite the expression x · e1/x as e
1/x

1/x
; now, as x → 0+, we get

the indeterminate form∞/∞ to which l’Hôpital’s Rule can be applied.

lim
x→0+

x · e1/x = lim
x→0+

e1/x

1/x

by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

InterpretaƟon: e1/x grows “faster” than x shrinks to zero, meaning their
product grows without bound.

2. As x → 0−, x → 0 and e1/x → e−∞ → 0. The the limit evaluates to 0 · 0
which is not an indeterminate form. We conclude then that

lim
x→0−

x · e1/x = 0.

3. This limit iniƟally evaluates to the indeterminate form∞−∞. By applying
a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
.

As x → ∞, the argument of the ln term approaches ∞/∞, to which we
can apply l’Hôpital’s Rule.

lim
x→∞

x+ 1
x

by LHR
=

1
1
= 1.

Notes:
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Since x → ∞ implies
x+ 1
x

→ 1, it follows that

x → ∞ implies ln
(
x+ 1
x

)
→ ln 1 = 0.

Thus
lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
= 0.

InterpretaƟon: since this limit evaluates to 0, it means that for large x,
there is essenƟally no difference between ln(x + 1) and ln x; their differ-
ence is essenƟally 0.

4. The limit lim
x→∞

x2−ex iniƟally returns the indeterminate form∞−∞. We

can rewrite the expression by factoring out x2; x2 − ex = x2
(
1− ex

x2

)
.

We need to evaluate how ex/x2 behaves as x → ∞:

lim
x→∞

ex

x2
by LHR
= lim

x→∞

ex

2x

by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞ · (−∞), which is not an inde-
terminate form; rather, ∞ · (−∞) evaluates to −∞. We conclude that
lim
x→∞

x2 − ex = −∞.

InterpretaƟon: as x gets large, the difference between x2 and ex grows
very large.

...

Indeterminate Forms 00, 1∞ and∞0

When faced with an indeterminate form that involves a power, it oŌen helps
to employ the natural logarithmic funcƟon. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

.

.

.
Key Idea 20 EvaluaƟng Limits Involving Indeterminate Forms

00, 1∞ and∞0

If lim
x→c

ln
(
f(x)
)
= L, then lim

x→c
f(x) = lim

x→c
eln(f(x)) = e L.

Notes:
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.. Example 190 ..Using l’Hôpital’s Rule with indeterminate forms involving
exponents
Evaluate the following limits.

1. lim
x→∞

(
1+

1
x

)x

2. lim
x→0+

xx.

SÊ½çã®ÊÄ

1. This equivalent to a special limit given in Theorem 3; these limits have
important applicaƟons within mathemaƟcs and finance. Note that the
exponent approaches ∞ while the base approaches 1, leading to the in-
determinate form 1∞. Let f(x) = (1+1/x)x; the problem asks to evaluate
lim
x→∞

f(x). Let’s first evaluate lim
x→∞

ln
(
f(x)
)
.

lim
x→∞

ln
(
f(x)
)
= lim

x→∞
ln
(
1+

1
x

)x

= lim
x→∞

x ln
(
1+

1
x

)
= lim

x→∞

ln
(
1+ 1

x

)
1/x

This produces the indeterminate form 0/0, so we apply l’Hôpital’s Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1
1+ 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)
)
= 1.We return to the original limit and apply Key Idea

20.

lim
x→∞

(
1+

1
x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.

..

2. This limit leads to the indeterminate form 00. Let f(x) = xx and consider

Notes:
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. 1. 2.

1

.

2

.

3

.

4

.
x

.

y

Figure 6.17: A graph of f(x) = xx support-
ing the fact that as x → 0+, f(x) → 1.

6.7 L’Hôpital’s Rule

first lim
x→0+

ln
(
f(x)
)
.

lim
x→0+

ln
(
f(x)
)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln x

= lim
x→0+

ln x
1/x

.

This produces the indeterminate form−∞/∞ soweapply l’Hôpital’s Rule.

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)
)
= 0. We return to the original limit and apply Key Idea

20.
lim

x→0+
xx = lim

x→0+
f(x) = lim

x→0+
eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Figure 6.17.
...

Our brief revisit of limits will be rewarded in the next secƟon where we con-
sider improper integraƟon. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ 1

0
f(x) dx. Improper integraƟon

considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applicaƟons, in addiƟon to generaƟng ideas that are
enlightening.

Notes:
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Exercises 6.7
Terms and Concepts
1. List the different indeterminate forms described in this sec-

Ɵon.

2. T/F: l’Hôpital’s Rule provides a faster method of compuƟng
derivaƟves.

3. T/F: l’Hôpital’s Rule states that
d
dx

[
f(x)
g(x)

]
=

f ′(x)
g′(x)

.

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks: TheQuoƟent Rule is applied to
f(x)
g(x)

when

taking ; l’Hôpital’s Rule is applied when taking
certain .

6. Create (but do not evaluate!) a limit that returns “∞0”.

7. Create a funcƟon f(x) such that lim
x→1

f(x) returns “00”.

Problems
In Exercises 8 – 52, evaluate the given limit.

8. lim
x→1

x2 + x− 2
x− 1

9. lim
x→2

x2 + x− 6
x2 − 7x+ 10

10. lim
x→π

sin x
x− π

11. lim
x→π/4

sin x− cos x
cos(2x)

12. lim
x→0

sin(5x)
x

13. lim
x→0

sin(2x)
x+ 2

14. lim
x→0

sin(2x)
sin(3x)

15. lim
x→0

sin(ax)
sin(bx)

16. lim
x→0+

ex − 1
x2

17. lim
x→0+

ex − x− 1
x2

18. lim
x→0+

x− sin x
x3 − x2

19. lim
x→∞

x4

ex

20. lim
x→∞

√
x

ex

21. lim
x→∞

ex√
x

22. lim
x→∞

ex

2x

23. lim
x→∞

ex

3x

24. lim
x→3

x3 − 5x2 + 3x+ 9
x3 − 7x2 + 15x− 9

25. lim
x→−2

x3 + 4x2 + 4x
x3 + 7x2 + 16x+ 12

26. lim
x→∞

ln x
x

27. lim
x→∞

ln(x2)
x

28. lim
x→∞

(
ln x
)2

x
29. lim

x→0+
x · ln x

30. lim
x→0+

√
x · ln x

31. lim
x→0+

xe1/x

32. lim
x→∞

x3 − x2

33. lim
x→∞

√
x− ln x

34. lim
x→−∞

xex

35. lim
x→0+

1
x2
e−1/x

36. lim
x→0+

(1+ x)1/x

37. lim
x→0+

(2x)x

38. lim
x→0+

(2/x)x

39. lim
x→0+

(sin x)x Hint: use the Squeeze Theorem.

40. lim
x→1+

(1− x)1−x

41. lim
x→∞

(x)1/x

42. lim
x→∞

(1/x)x

43. lim
x→1+

(ln x)1−x

44. lim
x→∞

(1+ x)1/x

45. lim
x→∞

(1+ x2)1/x

46. lim
x→π/2

tan x cos x

47. lim
x→π/2

tan x sin(2x)

48. lim
x→1+

1
ln x

− 1
x− 1

49. lim
x→3+

5
x2 − 9

− x
x− 3

50. lim
x→∞

x tan(1/x)

51. lim
x→∞

(ln x)3

x

52. lim
x→1

x2 + x− 2
ln x
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Figure 6.18: Graphing f(x) =
1

1+ x2
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6.8 Improper IntegraƟon

6.8 Improper IntegraƟon
We begin this secƟon by considering the following definite integrals:

•
∫ 100

0

1
1+ x2

dx ≈ 1.5608,

•
∫ 1000

0

1
1+ x2

dx ≈ 1.5698,

•
∫ 10,000

0

1
1+ x2

dx ≈ 1.5707.

NoƟce how the integrand is 1/(1+ x2) in each integral (which is sketched in
Figure 6.18). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1
1+ x2

dx = tan−1 x
∣∣∣b
0
= tan−1 b− tan−1 0 = tan−1 b.

As b → ∞, tan−1 b → π/2. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

0

1
1+ x2

dx approaches π/2 ≈ 1.5708. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two sƟpulaƟons:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The funcƟon f(x) was conƟnuous on [a, b] (ensuring that the range of f
was finite).

In this secƟon we consider integrals where one or both of the above condi-
Ɵons do not hold. Such integrals are called improper integrals.

Notes:
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Figure 6.19: A graph of f(x) = 1
x2 in Ex-

ample 191.

Chapter 6 Techniques of AnƟdifferenƟaƟon

Improper Integrals with Infinite Bounds

.

.

.
DefiniƟon 24 Improper Integrals with Infinite Bounds; Coverge, Diverge

1. Let f be a conƟnuous funcƟon on [a,∞). Define∫ ∞

a
f(x) dx to be lim

b→∞

∫ b

a
f(x) dx.

2. Let f be a conƟnuous funcƟon on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a
f(x) dx.

3. Let f be a conƟnuous funcƟon on (−∞,∞). Let c be any real number; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists; otherwise, it di-
verges. The improper integral in part 3 converges if and only if both of its limits exist.

.. Example 191 ..EvaluaƟng improper integrals
Evaluate the following improper integrals.

1.
∫ ∞

1

1
x2

dx

2.
∫ ∞

1

1
x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1
1+ x2

dx

SÊ½çã®ÊÄ

1.
∫ ∞

1

1
x2

dx = lim
b→∞

∫ b

1

1
x2

dx

= lim
b→∞

−1
x

∣∣∣b
1

= lim
b→∞

−1
b

+ 1

= 1.
A graph of the area defined by this integral is given in Figure 6.19.

Notes:
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Figure 6.20: A graph of f(x) = 1
x in Exam-

ple 191.
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Figure 6.21: A graph of f(x) = ex in Exam-
ple 191.
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Figure 6.22: A graph of f(x) = 1
1+x2 in Ex-

ample 191.

6.8 Improper IntegraƟon

2.
∫ ∞

1

1
x
dx = lim

b→∞

∫ b

1

1
x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1
x
dx diverges.

Compare the graphs in Figures 6.19 and 6.20; noƟce how the graph of
f(x) = 1/x is noƟceably larger. This difference is enough to cause the
improper integral to diverge.

3.
∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a
ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.
A graph of the area defined by this integral is given in Figure 6.21.

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of DefiniƟon 24. Any value of c is fine; we choose c = 0.

∫ ∞

−∞

1
1+ x2

dx = lim
a→−∞

∫ 0

a

1
1+ x2

dx+ lim
b→∞

∫ b

0

1
1+ x2

dx

= lim
a→−∞

tan−1 x
∣∣∣0
a
+ lim

b→∞
tan−1 x

∣∣∣b
0

= lim
a→−∞

(
tan−1 0− tan−1 a

)
+ lim

b→∞

(
tan−1 b− tan−1 0

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has value:

= π.

A graph of the area defined by this integral is given in Figure 6.22.
...

Notes:
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Figure 6.23: A graph of f(x) = ln x
x2 in Ex-

ample 192.

Chapter 6 Techniques of AnƟdifferenƟaƟon

The previous secƟon introduced l’Hôpital’s Rule, a method of evaluaƟng lim-
its that return indeterminate forms. It is not uncommon for the limits resulƟng
from improper integrals to need this rule as demonstrated next.

.. Example 192 Improper integraƟon and l’Hôpital’s Rule

Evaluate the improper integral
∫ ∞

1

ln x
x2

dx.

SÊ½çã®ÊÄ This integral will require the use of IntegraƟon by Parts. Let
u = ln x and dv = 1/x2 dx. Then∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

(
− ln x

x

∣∣∣b
1
+

∫ b

1

1
x2

dx

)

= lim
b→∞

(
− ln x

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln b

b
− 1

b
− (− ln 1− 1)

)
.

The 1/b and ln 1 terms go to 0, leaving lim
b→∞

− ln b
b

+ 1. We need to evaluate

lim
b→∞

ln b
b

with l’Hôpital’s Rule. We have:

lim
b→∞

ln b
b

by LHR
= lim

b→∞

1/b
1

= 0.

Thus the improper integral evaluates as:∫ ∞

1

ln x
x2

dx = 1.
..

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integraƟon
was infinite. We now consider another type of improper integraƟon, where the
range of the integrand is infinite.

Notes:

324



Note: In DefiniƟon 25, c can be one of the
endpoints (a or b). In that case, there is
only one limit to consider as part of the
definiƟon as the other is 0.
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Figure 6.24: A graph of f(x) = 1√
x in Ex-

ample 193.
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Figure 6.25: A graph of f(x) = 1
x2 in Ex-

ample 193.

6.8 Improper IntegraƟon

.

.

.
DefiniƟon 25 Improper IntegraƟon with Infinite Range

Let f(x) be a conƟnuous funcƟon on [a, b] except at c, a ≤ c ≤ b, where
x = c is a verƟcal asymptote of f. Define∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

.. Example 193 ..Improper integraƟon of funcƟons with infinite range
Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1
x2

dx.

SÊ½çã®ÊÄ

1. A graph of f(x) = 1/
√
x is given in Figure 6.24. NoƟce that f has a verƟcal

asymptote at x = 0; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathemaƟcs when considering
the infinite).

2. The funcƟon f(x) = 1/x2 has a verƟcal asymptote at x = 0, as shown
in Figure 6.25, so this integral is an improper integral. Let’s eschew using
limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:∫ 1

−1

1
x2

dx = −1
x

∣∣∣1
−1

= −1− (1)
= −2!

Notes:
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Figure 6.26: Ploƫng funcƟons of the form
1/x p in Example 194.

Chapter 6 Techniques of AnƟdifferenƟaƟon

Clearly the area in quesƟon is above the x-axis, yet the area is supposedly
negaƟve! Why does our answer not match our intuiƟon? To answer this,
evaluate the integral using DefiniƟon 25.∫ 1

−1

1
x2

dx = lim
t→0−

∫ t

−1

1
x2

dx+ lim
t→0+

∫ 1

t

1
x2

dx

= lim
t→0−

−1
x

∣∣∣t
−1

+ lim
t→0+

−1
x

∣∣∣1
t

= lim
t→0−

−1
t
− 1+ lim

t→0+
−1+

1
t

⇒
(
∞− 1

)
+
(
− 1+∞

)
.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical....

Understanding Convergence and Divergence

OŌenƟmes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integraƟng.

Our first tool is to understand the behavior of funcƟons of the form
1
xp

.

.. Example 194 ..Improper integraƟon of 1/xp

Determine the values of p for which
∫ ∞

1

1
xp

dx converges.

SÊ½çã®ÊÄ We begin by integraƟng and then evaluaƟng the limit.∫ ∞

1

1
xp

dx = lim
b→∞

∫ b

1

1
xp

dx

= lim
b→∞

∫ b

1
x−p dx (assume p ̸= 1)

= lim
b→∞

1
−p+ 1

x−p+1
∣∣∣b
1

= lim
b→∞

1
1− p

(
b1−p − 11−p).

When does this limit converge – i.e., when is this limit not ∞? This limit con-
verges precisely when the power of b is less than 0: when 1− p < 0 ⇒ 1 < p.

Notes:

326



Note: We used the upper and lower
bound of “1” in Key Idea 21 for conve-
nience. It can be replaced by any awhere
a > 0.

6.8 Improper IntegraƟon

Our analysis shows that if p > 1, then
∫ ∞

1

1
xp

dx converges. When p < 1

the improper integral diverges; we showed in Example 191 that when p = 1 the
integral also diverges.

Figure 6.26 graphs y = 1/xwith a dashed line, alongwith graphs of y = 1/xp,
p < 1, and y = 1/xq, q > 1. Somehow the dashed line forms a dividing line
between convergence and divergence. ...

The result of Example 194 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1
xp

dx. These results are summarized in the

following Key Idea.

.

.

.

Key Idea 21 Convergence of Improper Integrals
∫ ∞

1

1
xp

dx and
∫ 1

0

1
xp

dx.

1. The improper integral
∫ ∞

1

1
xp

dx converges when p > 1 and diverges when p ≤ 1.

2. The improper integral
∫ 1

0

1
xp

dx converges when p < 1 and diverges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We oŌen use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

.

.

.
Theorem 51 Direct Comparison Test for Improper Integrals

Let f and g be conƟnuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

2. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

Notes:
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Figure 6.27: Graphs of f(x) = e−x2 and
f(x) = 1/x2 in Example 195.
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Figure 6.28: Graphs of f(x) = 1/
√
x2 − x

and f(x) = 1/x in Example 195.

Chapter 6 Techniques of AnƟdifferenƟaƟon

.. Example 195 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

1.
∫ ∞

1
e−x2 dx 2.

∫ ∞

3

1√
x2 − x

dx

SÊ½çã®ÊÄ

1. The funcƟon f(x) = e−x2 does not have an anƟderivaƟve expressible in
terms of elementary funcƟons, so we cannot integrate directly. It is com-
parable to g(x) = 1/x2, and as demonstrated in Figure 6.27, e−x2 < 1/x2

on [1,∞). We know from Key Idea 21 that
∫ ∞

1

1
x2

dx converges, hence∫ ∞

1
e−x2 dx also converges.

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1
x
. We know from Key

Idea 21 and the subsequent note that
∫ ∞

3

1
x
dx diverges, so we seek to

compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x =
√
x2 >

√
x2 − x. Taking

reciprocals reverses the inequality, giving

1
x
<

1√
x2 − x

.

Using Theorem51,we conclude that since
∫ ∞

3

1
x
dxdiverges,

∫ ∞

3

1√
x2 − x

dx

diverges as well. Figure 6.28 illustrates this.
..

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a liƩle

“too nice.” For instance, it was convenient that
1
x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x+ 5”? That is, what can we say about the con-

vergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1
x
>

1√
x2 + 2x+ 5

, so we cannot

use Theorem 51.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Notes:
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Figure 6.29: Graphing f(x) = 1√
x2+2x+5

and f(x) = 1
x in Example 196.

6.8 Improper IntegraƟon

.

.

.
Theorem 52 Limit Comparison Test for Improper Integrals

Let f and g be conƟnuous funcƟons on [a,∞) where f(x) > 0 and g(x) > 0
for all x. If

lim
x→∞

f(x)
g(x)

= L, 0 < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

.. Example 196 Determining convergence of improper integrals

Determine the convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx.

SÊ½çã®ÊÄ As x gets large, the quadraƟc inside the square root funcƟon
will begin to behave much like y = x. So we compare

1√
x2 + 2x+ 5

to
1
x
with

the Limit Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5
1/x

= lim
x→∞

x√
x2 + 2x+ 5

.

The immediate evaluaƟonof this limit returns∞/∞, an indeterminate form.
Using l’Hôpital’s Rule seems appropriate, but in this situaƟon, it does not lead
to useful results. (We encourage the reader to employ l’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root funcƟon. To get rid of it, we employ the fol-
lowing fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true when either c or L

is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As x gets very
large, the funcƟon

1√
x2 + 2x+ 5

looks very much like
1
x
. Since we know that∫ ∞

3

1
x
dxdiverges, by the Limit Comparison Testwe know that

∫ ∞

3

1√
x2 + 2x+ 5

dx

also diverges. Figure 6.29 graphs f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, illus-

traƟng that as x gets large, the funcƟons become indisƟnguishable. ..

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a liƩle more difficult to employ,
they are omiƩed from this text.

Notes:
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Exercises 6.8
Terms and Concepts
1. The definite integral was defined with what two sƟpula-

Ɵons?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0
f(x) dx is

said to .

3. If
∫ ∞

1
f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

1
g(x) dx .

4. For what values of p will
∫ ∞

1

1
xp

dx converge?

5. For what values of p will
∫ ∞

10

1
xp

dx converge?

6. For what values of p will
∫ 1

0

1
xp

dx converge?

Problems
In Exercises 7 – 33, evaluate the given improper integral.

7.
∫ ∞

0
e5−2x dx

8.
∫ ∞

1

1
x3

dx

9.
∫ ∞

1
x−4 dx

10.
∫ ∞

−∞

1
x2 + 9

dx

11.
∫ 0

−∞
2x dx

12.
∫ 0

−∞

(
1
2

)x

dx

13.
∫ ∞

−∞

x
x2 + 1

dx

14.
∫ ∞

−∞

x
x2 + 4

dx

15.
∫ ∞

2

1
(x− 1)2

dx

16.
∫ 2

1

1
(x− 1)2

dx

17.
∫ ∞

2

1
x− 1

dx

18.
∫ 2

1

1
x− 1

dx

19.
∫ 1

−1

1
x
dx

20.
∫ 3

1

1
x− 2

dx

21.
∫ π

0
sec2 x dx

22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0
xe−x dx

24.
∫ ∞

0
xe−x2 dx

25.
∫ ∞

−∞
xe−x2 dx

26.
∫ ∞

−∞

1
ex + e−x dx

27.
∫ 1

0
x ln x dx

28.
∫ ∞

1

ln x
x

dx

29.
∫ 1

0
ln x dx

30.
∫ ∞

1

ln x
x2

dx

31.
∫ ∞

1

ln x√
x
dx

32.
∫ ∞

0
e−x sin x dx

33.
∫ ∞

0
e−x cos x dx
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In Exercises 34 – 43, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what funcƟon the integrand is being com-
pared to.

34.
∫ ∞

10

3√
3x2 + 2x− 5

dx

35.
∫ ∞

2

4√
7x3 − x

dx

36.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx

37.
∫ ∞

1
e−x ln x dx

38.
∫ ∞

5
e−x2+3x+1 dx

39.
∫ ∞

0

√
x

ex
dx

40.
∫ ∞

2

1
x2 + sin x

dx

41.
∫ ∞

0

x
x2 + cos x

dx

42.
∫ ∞

0

1
x+ ex

dx

43.
∫ ∞

0

1
ex − x

dx
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7: AÖÖ½®��ã®ÊÄÝ Ê¥ IÄã�¦Ù�ã®ÊÄ

We begin this chapter with a reminder of a few key concepts from Chapter 5. Let f be a conƟnuous
funcƟon on [a, b] which is parƟƟoned into n subintervals as

a < x1 < x2 < · · · < xn < xn+1 = b.

Let∆xi denote the length of the ith subinterval, and let ci be any x-value in that subinterval. DefiniƟon
21 states that the sum

n∑
i=1

f(ci)∆xi

is a Riemann Sum. Riemann Sums are oŌen used to approximate some quanƟty (area, volume, work,
pressure, etc.). The approximaƟon becomes exact by taking the limit

lim
||∆xi||→0

n∑
i=1

f(ci)∆xi,

where ||∆xi|| the length of the largest subinterval in the parƟƟon. Theorem 38 connects limits of
Riemann Sums to definite integrals:

lim
||∆xi||→0

n∑
i=1

f(ci)∆xi =
∫ b

a
f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals can be evaluated using
anƟderivaƟves.
This chapter employs the following technique to a variety of applicaƟons. Suppose the value Q of a
quanƟty is to be calculated. We first approximate the value of Q using a Riemann Sum, then find the
exact value via a definite integral. We spell out this technique in the following Key Idea.

.

.

.
Key Idea 22 ApplicaƟon of Definite Integrals Strategy

Let a quanƟty be given whose value Q is to be computed.

1. Divide the quanƟty into n smaller “subquanƟƟes” of value Qi.

2. IdenƟfy a variable x and funcƟon f(x) such that each subquanƟty can be approximated with
the product f(ci)∆xi, where ∆xi represents a small change in x. Thus Qi ≈ f(ci)∆xi. A
sample approximaƟon f(ci)∆xi of Qi is called a differenƟal element.

3. Recognize that Q =
n∑

i=1

Qi ≈
n∑

i=1

f(ci)∆xi, which is a Riemann Sum.

4. Taking the appropriate limit gives Q =

∫ b

a
f(x) dx

This Key Idea will make more sense aŌer we have had a chance to use it
several Ɵmes. We begin Area Between Curves, which we addressed briefly in
SecƟon 5.5.4.
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Figure 7.1: Subdividing a region into ver-
Ɵcal slices and approximaƟng the areas
with rectangles.

Chapter 7 ApplicaƟons of IntegraƟon

7.1 Area Between Curves
We are oŌen interested in knowing the area of a region. Forget momentarily
that we addressed this already in SecƟon 5.5.4 and approach it instead using
the technique described in Key Idea 22.

LetQ be the area of a region bounded by conƟnuous funcƟons f and g. If we
break the region into many subregions, we have an obvious equaƟon:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systemaƟcally break a region into sub-

regions. A graph will help. Consider Figure 7.1 (a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
parƟcularly efficient way is to “slice” it verƟcally, as shown in Figure 7.1 (b).

We now approximate the area of a slice. Again, we have many opƟons, but
using a rectangle seems simplest. Picking any x-value ci in the i th slice, we set
the height of the rectangle to be f(ci)− g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆xi. Figure 7.1 (c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differenƟal element.) Each slice has an area approximately equal to(
f(ci)− g(ci)

)
∆xi; hence, the total area is approximately the Riemann Sum

Q =
n∑

i=1

(
f(ci)− g(ci)

)
∆xi.

Taking the limit as ||∆xi|| → 0 gives the exact area as
∫ b
a

(
f(x)− g(x)

)
dx.

.

.

.
Theorem 53 Area Between Curves (restatement of Theorem 41)

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

.. Example 197 ..Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x+ 2, g(x) = 1

2 cos(2x)− 1,
x = 0 and x = 4π, as shown in Figure 7.2.

SÊ½çã®ÊÄ The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is

Notes:
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Figure 7.2: Graphing an enclosed region
in Example 197.
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Figure 7.3: Graphing a region enclosed by
two funcƟons in Example 198.
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Figure 7.4: Graphing a region for Example
199.

7.1 Area Between Curves

the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin x+ 2−

(1
2
cos(2x)− 1

))
dx

= − cos x− 1
4
sin(2x) + 3x

∣∣∣4π
0

= 12π ≈ 37.7 units2.
...

.. Example 198 Finding total area enclosed by curves
Find the total area of the region enclosed by the funcƟons f(x) = −2x+ 5 and
g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 7.3.

SÊ½çã®ÊÄ A quick calculaƟon shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by compuƟng
∫ 4

1

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless integraƟon returns
−9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1, 2] and [2, 4] and using the
proper integrand in each.

Total Area =

∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

= 5/12+ 8/3

= 37/12 = 3.083 units2.
..

The previous example makes note that we are expecƟng area to be posiƟve.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negaƟve area.” That doesn’t apply here; area is
to be posiƟve.

The previous example also demonstrates that we oŌen have to break a given
region into subregions before applying Theorem 53. The following example
shows another situaƟon where this is applicable, along with an alternate view
of applying the Theorem.

.. Example 199 ..Finding area: integraƟng with respect to y
Find the area of the region enclosed by the funcƟons y =

√
x + 2, y = −(x −

1)2 + 3 and y = 2, as shown in Figure 7.4.
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Figure 7.5: The region used in Example
199 with boundaries relabeled as func-
Ɵons of y.

Chapter 7 ApplicaƟons of IntegraƟon

SÊ½çã®ÊÄ We give two approaches to this problem. In the first ap-
proach, we noƟce that the region’s “top” is defined by two different curves.
On [0, 1], the top funcƟon is y =

√
x + 2; on [1, 2], the top funcƟon is y =

−(x− 1)2 + 3. Thus we compute the area as the sum of two integrals:

Total Area =

∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3+ 2/3
= 4/3

The second approach is clever and very useful in certain situaƟons. We are
used to viewing curves as funcƟons of x; we input an x-value and a y-value is re-
turned. Some curves can also be described as funcƟons of y: input a y-value and
an x-value is returned. We can rewrite the equaƟons describing the boundary
by solving for x:

y =
√
x+ 2 ⇒ x = (y− 2)2

y = −(x− 1)2 + 3 ⇒ x =
√

3− y+ 1.

Figure 7.5 shows the region with the boundaries relabeled. A differenƟal
element, a horizontal rectangle, is also pictured. The width of the rectangle is
a small change in y: ∆y. The height of the rectangle is a difference in x-values.
The “top” x-value is the largest value, i.e., the rightmost. The “boƩom” x-value
is the smaller, i.e., the leŌmost. Therefore the height of the rectangle is(√

3− y+ 1
)
− (y− 2)2.

The area is found by integraƟng the above funcƟon with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “boƩom” funcƟons exist on the y interval [2, 3]. Thus

Total Area =

∫ 3

2

(√
3− y+ 1− (y− 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y− 1

3
(y− 2)3

)∣∣∣3
2

= 4/3.
...

This calculus–based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 200 computes the area of a trian-
gle. While the formula “ 12 × base× height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.
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Figure 7.6: Graphing a triangular region in
Example 200.
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Figure 7.7: (a) A sketch of a lake, and (b)
the lake with length measurements.

7.1 Area Between Curves

.. Example 200 Finding the area of a triangle
Compute the area of the regions bounded by the lines
y = x+ 1, y = −2x+ 7 and y = − 1

2x+
5
2 , as shown in Figure 7.6.

SÊ½çã®ÊÄ Recognize that there are two “top” funcƟons to this region,
causing us to use two definite integrals.

Total Area =

∫ 2

1

(
(x+ 1)− (−1

2
x+

5
2
)
)
dx+

∫ 3

2

(
(−2x+ 7)− (−1

2
x+

5
2
)
)
dx

= 3/4+ 3/4
= 3/2.

We can also approach this by converƟng each funcƟon into a funcƟon of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstraƟon purposes.

The “top” funcƟon is always x = 7−y
2 while there are two “boƩom” func-

Ɵons. Being mindful of the proper integraƟon bounds, we have

Total Area =

∫ 2

1

(7− y
2

− (5− 2y)
)
dy+

∫ 3

2

(7− y
2

− (y− 1)
)
dy

= 3/4+ 3/4
= 3/2.

Of course, the final answer is the same. (It is interesƟng to note that the area of
all 4 subregions used is 3/4. This is coincidental.) ..

While we have focused on producing exact answers, we are also able make
approximaƟons using the principle of Theorem 53. The integrand in the theo-
rem is a distance (“top minus boƩom”); integraƟng this distance funcƟon gives
an area. By taking discrete measurements of distance, we can approximate an
area using Numerical IntegraƟon techniques developed in SecƟon 5.5. The fol-
lowing example demonstrates this.

.. Example 201 ..Numerically approximaƟng area
To approximate the area of a lake, shown in Figure 7.7 (a), the “length” of the
lake is measured at 200-foot increments as shown in Figure 7.7 (b), where the
lengths are given in hundreds of feet. Approximate the area of the lake.

SÊ½çã®ÊÄ The measurements of length can be viewed as measuring
“top minus boƩom” of two funcƟons. The exact answer is found by integraƟng∫ 12

0

(
f(x) − g(x)

)
dx, but of course we don’t know the funcƟons f and g. Our

discrete measurements instead allow us to approximate.

Notes:
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We have the following data points:

(0, 0), (2, 2.25), (4, 5.08), (6, 6.35), (8, 5.21), (10, 2.76), (12, 0).

We also have that∆x = b−a
n = 2, so Simpson’s Rule gives

Area ≈ 2
3

(
1 · 0+ 4 · 2.25+ 2 · 5.08+ 4 · 6.35+ 2 · 5.21+ 4 · 2.76+ 1 · 0

)
= 44.013 units2.

Since the measurements are in hundreds of feet, units2 = (100 Ō)2 =
10, 000 Ō2, giving a total area of 440, 133 Ō2. (Since we are approximaƟng, we’d
likely say the area was about 440, 000 Ō2, which is a liƩle more than 10 acres.) ...

Notes:
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Exercises 7.1
Terms and Concepts
1. T/F: The area between curves is always posiƟve.

2. T/F: Calculus can be used to find the area of basic geometric
shapes.

3. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

Problems

In Exercises 4 – 10, find the area of the shaded region in the
given graph.
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In Exercises 11 – 16, find the total area enclosed by the func-
Ɵons f and g.

11. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1
12. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3
13. f(x) = sin x, g(x) = 2x/π
14. f(x) = x3 − 4x2 + x− 1, g(x) = −x2 + 2x− 4
15. f(x) = x, g(x) =

√
x

16. f(x) = −x3 + 5x2 + 2x+ 1, g(x) = 3x2 + x+ 3
17. The funcƟons f(x) = cos(2x) and g(x) = sin x intersect

infinitely many Ɵmes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises 18 – 22, find the area of the enclosed region in
two ways:

1. by treaƟng the boundaries as funcƟons of x, and
2. by treaƟng the boundaries as funcƟons of y.
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In Exercises 23 – 26, find the area triangle formed by the given
three points.

23. (1, 1), (2, 3), and (3, 3)

24. (−1, 1), (1, 3), and (2,−1)

25. (1, 1), (3, 3), and (3, 3)

26. (0, 0), (2, 5), and (5, 2)

27. Use the Trapezoidal Rule to approximate the area of the
pictured lake whose lengths, in hundreds of feet, are mea-
sured in 100-foot increments.

..
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5.
2. 7.

3. 4.
5

28. Use Simpson’s Rule to approximate the area of the pictured
lake whose lengths, in hundreds of feet, are measured in
200-foot increments.
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Figure 7.9: OrienƟng a pyramid along the
x-axis in Example 202.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

7.2 VolumebyCross-SecƟonal Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure 7.8, is
Area of the base× height.

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cuƫng it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
secƟonal area× thickness. (These slices are the differenƟal elements.)

By orienƟng a solid along the x-axis, we can let A(xi) represent the cross-
secƟonal area of the i th slice, and let∆xi represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

.

.

.
Theorem 54 Volume By Cross-SecƟonal Area

The volume V of a solid, oriented along the x-axis with cross-secƟonal
area A(x) from x = a to x = b, is

V =

∫ b

a
A(x) dx.

.. Example 202 ..Finding the volume of a solid
Find the volume of a pyramidwith a square base of side length 10 in and a height
of 5 in.

SÊ½çã®ÊÄ There are many ways to “orient” the pyramid along the x-
axis; Figure 7.9 gives one such way, with the pointed top of the pyramid at the
origin and the x-axis going through the center of the base.

Each cross secƟon of the pyramid is a square; this is a sample differenƟal
element. To determine its area A(x), we need to determine the side lengths of

Notes:

341



Chapter 7 ApplicaƟons of IntegraƟon

the square.
When x = 5, the square has side length 10; when x = 0, the square has side

length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross-secƟonal square has side length 2x, giving A(x) = (2x)2 = 4x2. Following
Theorem 54, we have

V =

∫ 5

0
4x2 dx

=
4
3
x3
∣∣∣5
0

=
500
3

in3 ≈ 166.67 in3.

We can check our work by consulƟng the general equaƟon for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

1
3 × area of base× height.

Certainly, using this formula from geometry is faster than our new method, but
the calculus-based method can be applied to much more than just cones. ...

An important special case of Theorem 54 is when the solid is a solid of rev-
oluƟon, that is, when the solid is formed by rotaƟng a shape around an axis.

Start with a funcƟon y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross secƟons
are disks (thin circles). Let R(x) represent the radius of the cross-secƟonal disk
at x; the area of this disk is πR(x)2. Applying Theorem 54 gives the DiskMethod.

.

.

.
Key Idea 23 The Disk Method

Let a solid be formed by revolving the curve y = f(x) from x = a to x = b
around a horizontal axis, and let R(x) be the radius of the cross-secƟonal
disk at x. The volume of the solid is

V = π

∫ b

a
R(x)2 dx.

.. Example 203 ..Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, from x = 1
to x = 2, around the x-axis.

SÊ½çã®ÊÄ A sketch can help us understand this problem. In Figure 7.10
(a) the curve y = 1/x is sketched along with the differenƟal element – a disk –

Notes:
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Figure 7.10: Sketching a solid in Example
203.
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Figure 7.11: Sketching the solid in Exam-
ple 204.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

at x with radius R(x) = 1/x. In Figure 7.10 (b) the whole solid is pictured, along
with the differenƟal element.

Using Key Idea 23, we have

V = π

∫ 2

1

(
1
x

)2

dx

= π

∫ 2

1

1
x2

dx

= π

[
−1
x

] ∣∣∣2
1

= π

[
−1
2
− (−1)

]
=

π

2
units3.

...

While Key Idea 23 is given in terms of funcƟons of x, the principle involved
can be applied to funcƟons of y when the axis of rotaƟon is verƟcal, not hori-
zontal. We demonstrate this in the next example.

.. Example 204 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, from x = 1
to x = 2, about the y-axis.

SÊ½çã®ÊÄ Since the axis of rotaƟon is verƟcal, we need to convert the
funcƟon into a funcƟon of y and convert the x-bounds to y-bounds. Since y =
1/x defines the curve, we rewrite it as x = 1/y. The bound x = 1 corresponds to
the y-bound y = 1, and the bound x = 2 corresponds to the y-bound y = 1/2.

Thus we are rotaƟng the curve x = 1/y, from y = 1/2 to y = 1 about the
y-axis to form a solid. The curve and sample differenƟal element are sketched
in Figure 7.11 (a), with a full sketch of the solid in Figure 7.11 (b). We integrate
to find the volume:

V = π

∫ 1

1/2

1
y2

dy

= −π

y

∣∣∣1
1/2

= π units3.

..
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Figure 7.13: A sketch of the region used
in Example 205.

Chapter 7 ApplicaƟons of IntegraƟon

We can also compute the volume of solids of revoluƟon that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespecƟve of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a
R(x)2 dx− π

∫ b

a
r(x)2 dx = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

One can generate a solid of revoluƟon with a hole in the middle by revolving
a region about an axis. Consider Figure 7.12 (a), where a region is sketched along
with a dashed, horizontal axis of rotaƟon. By rotaƟng the region about the axis, a
solid is formed as sketched in Figure 7.12 (b). The outside of the solid has radius
R(x), whereas the inside has radius r(x). Each cross secƟon of this solid will be
a washer (a disk with a hole in the center) as sketched in Figure 7.12 (c). This
leads us to the Washer Method.

.

.

.
Key Idea 24 The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross secƟon at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

.. Example 205 ..Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the region bounded by y =
x2 − 2x+ 2 and y = 2x− 1 about the x-axis.

SÊ½çã®ÊÄ A sketch of the region will help, as given in Figure 7.13. Ro-
taƟng about the x-axis will produce cross secƟons in the shape of washers, as
shown in Figure 7.14 (a); the complete solid is shown in part (b). The outside
radius of this washer is R(x) = 2x+ 1; the inside radius is r(x) = x2− 2x+ 4. As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute

Notes:
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Figure 7.15: Sketching the solid in Exam-
ple 206.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

the volume.

V = π

∫ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

∫ 3

1

(
− x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
− 1

5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1

=
104
15

π ≈ 21.78 units3.
...

When rotaƟng about a verƟcal axis, the outside and inside radius funcƟons
must be funcƟons of y.

.. Example 206 Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the triangular region with ver-
Ɵces at (1, 1), (2, 1) and (2, 3) about the y-axis.

SÊ½çã®ÊÄ The triangular region is sketched in Figure 7.15 (a); the dif-
ferenƟal element is sketched in (b) and the full solid is drawn in (c). They help us
establish the outside and inside radii. Since the axis of rotaƟon is verƟcal, each
radius is a funcƟon of y.

The outside radius R(y) is formed by the line connecƟng (2, 1) and (2, 3); it
is a constant funcƟon, as regardless of the y-value the distance from the line to
the axis of rotaƟon is 2. Thus R(y) = 2.

The inside radius is formedby the line connecƟng (1, 1) and (2, 3). The equa-
Ɵon of this line is y = 2x−1, but we need to refer to it as a funcƟon of y. Solving
for x gives r(y) = 1

2 (y+ 1).
We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V = π

∫ 3

1

(
22 −

(1
2
(y+ 1)

)2) dy

= π

∫ 3

1

(
− 1

4
y2 − 1

2
y+

15
4

)
dy

= π
[
− 1

12
y3 − 1

4
y2 +

15
4
y
]∣∣∣3

1

=
10
3
π ≈ 10.47 units3.

..
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Exercises 7.2
Terms and Concepts
1. T/F: A solid of revoluƟon is formed by revolving a shape

around an axis.

2. In your ownwords, explain how the Disk andWasherMeth-
ods are related.

3. Explain the how the units of volume are found in the in-
tegral of Theorem 54: if A(x) has units of in2, how does∫
A(x) dx have units of in3?

Problems

In Exercises 4 – 7, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the x-
axis.

4.

.....

y = 3 − x2

.
−2
.

−1
.

1
.

2
.

1

.

2

.

3

. x.

y

5.

.....

y = 5x

.
0.5

.
1

.
1.5

.
2

.

5

.

10

. x.

y

6.

.....

y = cos x

. 0.5. 1. 1.5.

0.5

.

1

.
x

.

y

7.

.....

y =
√

x

.

y = x

. 0.5. 1.

0.5

.

1

.
x

.

y

In Exercises 8 – 11, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the y-
axis.

8.

.....

y = 3 − x2
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y = cos x
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(Hint: IntegraƟon By Parts will be necessary, twice. First let
u = arccos2 x, then let u = arccos x.)

346



11.

.....

y =
√

x

.

y = x

. 0.5. 1.

0.5

.

1

.
x

.

y

In Exercises 12 – 17, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revoluƟon formed by rotaƟng the region about
each of the given axes.

12. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the x-axis

(b) y = 1

(c) the y-axis

(d) x = 1

13. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) the x-axis

(b) y = 4

(c) y = −1

(d) x = 2

14. The triangle with verƟces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the x-axis

(b) y = 2

(c) the y-axis

(d) x = 1

15. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the x-axis

(b) y = 1

(c) y = 5

16. Region bounded by y = 1/
√
x2 + 1, x = −1, x = 1 and

the x-axis.
Rotate about:

(a) the x-axis

(b) y = 1

(c) y = −1

17. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the x-axis

(b) y = 4

(c) the y-axis

(d) x = 2

In Exercises 18 – 21, a solid is described. Orient the solid along
the x-axis such that a cross-secƟonal area funcƟon A(x) can
be obtained, then apply Theorem 54 to find the volume of
the solid.

18. A right circular cone with height of 10 and base radius of 5.

.. 5.

10

19. A skew right circular cone with height of 10 and base radius
of 5. (Hint: all cross-secƟons are circles.)

.. 5.

10

20. A right triangular cone with height of 10 and whose base is
a right, isosceles triangle with side length 4.

..
4

.
4

.

10

21. A solid with length 10 with a rectangular base and triangu-
lar top, wherein one end is a square with side length 5 and
the other end is a triangle with base and height of 5.

..
10

.

5

.

5

.

5
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Figure 7.16: Introducing the Shell
Method.

Chapter 7 ApplicaƟons of IntegraƟon

7.3 The Shell Method
OŌen a given problem can be solved in more than one way. A parƟcular method
may be chosen out of convenience, personal preference, or perhaps necessity.
UlƟmately, it is good to have opƟons.

The previous secƟon introduced the Disk and Washer Methods, which com-
puted the volume of solids of revoluƟon by integraƟng the cross-secƟonal area
of the solid. This secƟon develops another method of compuƟng volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotaƟon
creaƟng cross-secƟons, we now slice it parallel to the axis of rotaƟon, creaƟng
“shells.”

Consider Figure 7.16, where the region shown in (a) rotated around the y-
axis forming the solid shown in (b). A small slice of the region is drawn in (a),
parallel to the axis of rotaƟon. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (c) of the figure. The previous secƟon
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 7.17 (a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cuƫng the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth ∆x. Thus the volume is V ≈ 2πrh∆x; see
Figure 7.17 (b). (We say “approximately” since our radius was an approxima-
Ɵon.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

V =
n∑

i=1

2πrihi∆xi,

where ri, hi and∆xi are the radius, height and thickness of the i th shell, respec-
Ɵvely.

This is a Riemann Sum. Taking a limit as the thickness of the shells ap-
proaches 0 leads to a definite integral.

Notes:
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Figure 7.19: Graphing a region in Example
208.

Chapter 7 ApplicaƟons of IntegraƟon

carved out as the region is rotated about the y-axis. (This is the differenƟal ele-
ment.)

The distance this line is from the axis of rotaƟon determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is at y = 1/(1 + x2), whereas the boƩom
of the line is at y = 0. Thus h(x) = 1/(1+ x2)− 0 = 1/(1+ x2). The region is
bounded from x = 0 to x = 1, so the volume is

V = 2π
∫ 1

0

x
1+ x2

dx.

This requires subsƟtuƟon. Let u = 1 + x2, so du = 2x dx. We also change the
bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

∫ 2

1

1
u
du

= π ln u
∣∣∣2
1

= π ln 2 ≈ 2.178 units3.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2. ...

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

.. Example 208 ..Finding volume using the Shell Method
Find the volumeof the solid formed by rotaƟng the triangular region determined
by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.

SÊ½çã®ÊÄ The region is sketched in Figure 7.19 (a) along with the dif-
ferenƟal element, a line within the region parallel to the axis of rotaƟon. The
height of the differenƟal element is the distance from y = 1 to y = 2x+ 1, the
line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x + 1 − 1 = 2x.
The radius of the shell formed by the differenƟal element is the distance from
x to x = 3; that is, it is r(x) = 3 − x. The x-bounds of the region are x = 0 to

Notes:
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Figure 7.20: Graphing a region in Example
209.

7.3 The Shell Method

x = 1, giving

V = 2π
∫ 1

0
(3− x)(2x) dx

= 2π
∫ 1

0

(
6x− 2x2) dx

= 2π
(
3x2 − 2

3
x3
) ∣∣∣1

0

=
14
3
π ≈ 14.66 units3.

...

When revolving a region around a horizontal axis, we must consider the ra-
dius and height funcƟons in terms of y, not x.

.. Example 209 Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region given in Example 208
about the x-axis.

SÊ½çã®ÊÄ The region is sketched in Figure 7.20 (a) with a sample dif-
ferenƟal element and the solid is sketched in (b). (Note that the region looks
slightly different than it did in the previous example as the bounds on the graph
have changed.)

The height of the differenƟal element is an x-distance, between x = 1
2y−

1
2

and x = 1. Thus h(y) = 1−( 12y−
1
2 ) = − 1

2y+
3
2 . The radius is the distance from

y to the x-axis, so r(y) = y. The y bounds of the region are y = 1 and y = 3,
leading to the integral

V = 2π
∫ 3

1

[
y
(
−1
2
y+

3
2

)]
dy

= 2π
∫ 3

1

[
−1
2
y2 +

3
2
y
]
dy

= 2π
[
−1
6
y3 +

3
4
y2
] ∣∣∣3

1

= 2π
[
9
4
− 7

12

]
=

10
3
π ≈ 10.472 units3.

..

Notes:
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Figure 7.21: Graphing a region in Example
210.

Chapter 7 ApplicaƟons of IntegraƟon

At the beginning of this secƟon it was stated that “it is good to have opƟons.”
The next example finds the volume of a solid rather easily with the ShellMethod,
but using the Washer Method would be quite a chore.

.. Example 210 Finding volume using the Shell Method
Find the volumeof the solid formedby revolving the region boundedby y = sin x
and the x-axis from x = 0 to x = π about the y-axis.

SÊ½çã®ÊÄ The region and the resulƟng solid are given in Figure 7.21.
The radius of a sample shell is r(x) = x; the height of a sample shell is h(x) =
sin x, each from x = 0 to x = π. Thus the volume of the solid is

V = 2π
∫ π

0
x sin x dx.

This requires IntegraƟon By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:

= 2π
[
− x cos x

∣∣∣π
0
+

∫ π

0
cos x dx

]
= 2π

[
π + sin x

∣∣∣π
0

]
= 2π

[
π + 0

]
= 2π2 ≈ 19.74 units3.

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine funcƟon. We leave it to the reader
to verify that the outside radius funcƟon is R(y) = π − arcsin y and the inside
radius funcƟon is r(y) = arcsin y. Thus the volume can be computed as

π

∫ 1

0

[
(π − arcsin y)2 − (arcsin y)2

]
dy.

This integral isn’t terrible given that the arcsin2 y terms cancel, but it is more
onerous than the integral created by the Shell Method. ..

We end this secƟon with a table summarizing the usage of the Washer and
Shell Methods.

Notes:
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7.3 The Shell Method

.

.

.
Key Idea 26 Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

Washer Method Shell Method

Horizontal
Axis

π

∫ b

a

(
R(x)2 − r(x)2

)
dx 2π

∫ d

c
r(y)h(y) dy

VerƟcal
Axis

π

∫ d

c

(
R(y)2 − r(y)2

)
dy 2π

∫ b

a
r(x)h(x) dx

Notes:
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Exercises 7.3
Terms and Concepts
1. T/F: A solid of revoluƟon is formed by revolving a shape

around an axis.

2. T/F: The Shell Method can only be used when the Washer
Method fails.

3. T/F: The Shell Method works by integraƟng cross–secƟonal
areas of a solid.

4. T/F: When finding the volume of a solid of revoluƟon that
was revolved around a verƟcal axis, the Shell Method inte-
grates with respect to x.

Problems
In Exercises 5 – 8, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the y-axis.

5.

.....

y = 3 − x2
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. x.
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y = 5x
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.
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y = cos x
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√
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y = x
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In Exercises 9 – 12, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the x-axis.
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y = 3 − x2
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y = cos x
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12.

.....

y =
√

x

.

y = x

. 0.5. 1.

0.5
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1

.
x

.

y

In Exercises 13 – 18, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revoluƟon formed by rotaƟng the region about each of the
given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the y-axis

(b) x = 1

(c) the x-axis

(d) y = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) x = 2

(b) x = −2

(c) the x-axis

(d) y = 4

15. The triangle with verƟces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the y-axis

(b) x = 1

(c) the x-axis

(d) y = 2

16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the y-axis

(b) x = 1

(c) x = −1

17. Region bounded by y = 1/
√
x2 + 1, x = 1 and the x and

y-axes.
Rotate about:

(a) the y-axis (b) x = 1

18. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the y-axis

(b) x = 2

(c) the x-axis

(d) y = 4

355



.

.

√

= [ , ]

+

+

[ , + [ , ]

= [ , ]

=
[ , ]

=

.
= [ , ] .

= ( ) [ , ]
= < < . . . < < + =

[ , ]
[ , + ]

= ( )

√
+ .

≈
∑
=

√
+ .



7.4 Arc Length and Surface Area

In the above expression factor out a∆x2i term:

n∑
i=1

√
∆x2i +∆y2i =

n∑
i=1

√
∆x2i

(
1+

∆y2i
∆x2i

)
.

Now pull the∆x2i term out of the square root:

=
n∑

i=1

√
1+

∆y2i
∆x2i

∆xi.

This is nearly a Riemann Sum. Consider the ∆y2i /∆x2i term. The expression
∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run” of
f on the i th subinterval. The Mean Value Theorem of DifferenƟaƟon (Theorem
27) states that there is a ci in the i th subinterval where f ′(ci) = ∆yi/∆xi. Thus
we can rewrite our above expression as:

=

n∑
i=1

√
1+ f ′(ci)2 ∆xi.

This is a Riemann Sum. As long as f ′ is conƟnuous, we can invoke Theorem 38
and conclude

=

∫ b

a

√
1+ f ′(x)2 dx.

.

.

.
Key Idea 27 Arc Length

Let f be differenƟable on an open interval containing [a, b], where f ′ is
also conƟnuous on [a, b]. Then the arc length of f from x = a to x = b is

L =
∫ b

a

√
1+ f ′(x)2 dx.

As the integrand contains a square root, it is oŌen difficult to use the for-
mula in Key Idea 27 to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximaƟng definite in-
tegrals. The following examples will demonstrate this.

Notes:

357



.....
2

.
4

.

2

.

4

.

6

.

8

. x.

y

Figure 7.24: A graph of f(x) = x3/2 from
Example 211.

Chapter 7 ApplicaƟons of IntegraƟon

.. Example 211 Finding arc length
Find the arc length of f(x) = x3/2 from x = 0 to x = 4.

SÊ½çã®ÊÄ We begin by finding f ′(x) = 3
2x

1/2. Using the formula, we
find the arc length L as

L =
∫ 4

0

√
1+

(
3
2
x1/2

)2

dx

=

∫ 4

0

√
1+

9
4
x dx

=

∫ 4

0

(
1+

9
4
x
)1/2

dx

=
2
3
4
9

(
1+

9
4
x
)3/2 ∣∣∣4

0

=
8
27

(
103/2 − 1

)
≈ 9.07units.

A graph of f is given in Figure 7.24. ..

.. Example 212 ..Finding arc length
Find the arc length of f(x) =

1
8
x2 − ln x from x = 1 to x = 2.

SÊ½çã®ÊÄ This funcƟon was chosen specifically because the resulƟng
integral can be evaluated exactly. We begin by finding f ′(x) = x/4 − 1/x. The
arc length is

L =
∫ 2

1

√
1+

(
x
4
− 1

x

)2

dx

=

∫ 2

1

√
1+

x2

16
− 1

2
+

1
x2

dx

Notes:
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Figure 7.25: A graph of f(x) = 1
8 x

2 − ln x
from Example 212.

x
√
1+ cos2 x

0
√
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π/4
√

3/2
π/2 1
3π/4

√
3/2

π
√
2

Figure 7.26: A table of values of y =√
1+ cos2 x to evaluate a definite inte-

gral in Example 213.

7.4 Arc Length and Surface Area

=

∫ 2

1

√
x2

16
+

1
2
+

1
x2

dx

=

∫ 2

1

√(
x
4
+

1
x

)2

dx

=

∫ 2

1

(
x
4
+

1
x

)
dx

=

(
x2

8
+ ln x

) ∣∣∣∣∣
2

1

=
3
8
+ ln 2 ≈ 1.07 units.

A graph of f is given in Figure 7.25; the porƟon of the curve measured in this
problem is in bold. ...

The previous examples found the arc length exactly through careful choice
of the funcƟons. In general, exact answers are much more difficult to come by
and numerical approximaƟons are necessary.

.. Example 213 ApproximaƟng arc length numerically
Find the length of the sine curve from x = 0 to x = π.

SÊ½çã®ÊÄ This is somewhat of a mathemaƟcal curiosity; in Example
125 we found the area under one “hump” of the sine curve is 2 square units;
now we are measuring its arc length.

The setup is straighƞorward: f(x) = sin x and f ′(x) = cos x. Thus

L =
∫ π

0

√
1+ cos2 x dx.

This integral cannot be evaluated in terms of elementary funcƟons sowewill ap-
proximate it with Simpson’s Method with n = 4. Figure 7.26 gives

√
1+ cos2 x

evaluated at 5 evenly spaced points in [0, π]. Simpson’s Rule then states that∫ π

0

√
1+ cos2 x dx ≈ π − 0

4 · 3

(√
2+ 4

√
3/2+ 2(1) + 4

√
3/2+

√
2
)

= 3.82918.

Using a computer with n = 100 the approximaƟon is L ≈ 3.8202; our approxi-
maƟon with n = 4 is quite good. ..

Notes:

359



...

..

a

.

xi

.

xi+1

.

b

.

x

.

y

(a)

...

..

 R

.

r
{

.

L︷ ︸︸ ︷

.a. xi. xi+1. b

.

x

.

y

(b)

Figure 7.27: Establishing the formula for
surface area.
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Surface Area of Solids of RevoluƟon

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of compuƟng its volume, we now consider its
surface area.

We begin as we have in the previous secƟons: we parƟƟon the interval [a, b]
with n subintervals, where the i th subinterval is [xi, xi+1]. On each subinterval,
we can approximate the curve y = f(x) with a straight line that connects f(xi)
and f(xi+1) as shown in Figure 7.27 (a). Revolving this line segment about the
x-axis creates part of a cone (called the frustum of a cone) as shown in Figure
7.27 (b). The surface area of a frustum of a cone is

2π · length · average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to
state that

L ≈
√

1+ f ′(ci)∆xi

for some ci in the i th subinterval. The radii are just the funcƟon evaluated at the
endpoints of the interval. That is,

R = f(xi+1) and r = f(xi).

Thus the surface area of this sample frustum of the cone is approximately

2π
f(xi) + f(xi+1)

2

√
1+ f ′(ci)2∆xi.

Since f is a conƟnuous funcƟon, the IntermediateValue Theoremstates there

is some di in [xi, xi+1] such that f(di) =
f(xi) + f(xi+1)

2
; we can use this to rewrite

the above equaƟon as

2πf(di)
√

1+ f ′(ci)2∆xi.

Summing over all the subintervals we get the total surface area to be approxi-
mately

Surface Area ≈
n∑

i=1

2πf(di)
√

1+ f ′(ci)2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following Key Idea.

Notes:
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Figure 7.28: Revolving y = sin x on [0, π]
about the x-axis.

7.4 Arc Length and Surface Area

.

.

.
Key Idea 28 Surface Area of a Solid of RevoluƟon

Let f be differenƟable on an open interval containing [a, b] where f ′ is
also conƟnuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ 0, about the x-axis is

Surface Area = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π
∫ b

a
x
√

1+ f ′(x)2 dx.

(When revolving y = f(x) about the y-axis, the radii of the resulƟng frustum
are xi and xi+1; their average value is simply the midpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Key Idea 28.)

.. Example 214 Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving y = sin x on [0, π] around
the x-axis, as shown in Figure 7.28.

SÊ½çã®ÊÄ The setup is relaƟvely straighƞorward. Using Key Idea 28,
we have the surface area SA is:

SA = 2π
∫ π

0
sin x

√
1+ cos2 x dx

= −2π
1
2

(
sinh−1(cos x) + cos x

√
1+ cos2 x

)∣∣∣π
0

= 2π
(√

2+ sinh−1 1
)

≈ 14.42 units2.

The integraƟon step above is nontrivial, uƟlizing an integraƟon method called
Trigonometric SubsƟtuƟon.

It is interesƟng to see that the surface area of a solid, whose shape is defined
by a trigonometric funcƟon, involves both a square root and an inverse hyper-
bolic trigonometric funcƟon. ..

Notes:
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Figure 7.29: The solids used in Example
215.

Chapter 7 ApplicaƟons of IntegraƟon

.. Example 215 Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving the curve y = x2 on [0, 1]
about:

1. the x-axis

2. the y-axis.

SÊ½çã®ÊÄ

1. The integral is straighƞorward to setup:

SA = 2π
∫ 1

0
x2
√

1+ (2x)2 dx.

Like the integral in Example 214, this requires Trigonometric SubsƟtuƟon.

=
π

32

(
2(8x3 + x)

√
1+ 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18

√
5− sinh−1 2

)
≈ 3.81 units2.

The solid formed by revolving y = x2 around the x-axis is graphed in Figure
7.29 (a).

2. Since we are revolving around the y-axis, the “radius” of the solid is not
f(x) but rather x. Thus the integral to compute the surface area is:

SA = 2π
∫ 1

0
x
√

1+ (2x)2 dx.

This integral can be solved using subsƟtuƟon. Set u = 1 + 4x2; the new
bounds are u = 1 to u = 5. We then have

=
π

4

∫ 5

1

√
u du

=
π

4
2
3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
≈ 5.33 units2.

The solid formed by revolving y = x2 about the y-axis is graphed in Figure
7.29 (b)...

This last example is a famous mathemaƟcal “paradox.”

Notes:
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Figure 7.30: A graph of Gabriel’s Horn.

7.4 Arc Length and Surface Area

.. Example 216 The surface area and volume of Gabriel’s Horn
Consider the solid formed by revolving y = 1/x about the x-axis on [1,∞). Find
the volume and surface area of this solid. (This shape, as graphed in Figure 7.30,
is known as “Gabriel’s Horn” since it looks like a very long horn that only a su-
pernatural person, such as an angel, could play.)

SÊ½çã®ÊÄ To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

1

1
x2

dx

= lim
b→∞

π

∫ b

1

1
x2

dx

= lim
b→∞

π

(
−1
x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume of π cubic units. Since we have already seen
that objects with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straighƞorward to setup:

SA = 2π
∫ ∞

1

1
x
√

1+ 1/x4 dx.

IntegraƟng this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 <

√
1+ 1/x4 on [1,∞), we can state that

2π
∫ ∞

1

1
x
dx < 2π

∫ ∞

1

1
x
√

1+ 1/x4 dx.

By Key Idea 21, the improper integral on the leŌ diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Hornwith a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = 1/x2 on [1,∞) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite. ..

Notes:
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Exercises 7.4
Terms and Concepts
1. T/F: The integral formula for compuƟng Arc Length was

found by first approximaƟng arc length with straight line
segments.

2. T/F: The integral formula for compuƟng Arc Length includes
a square–root, meaning the integraƟon is probably easy.

Problems
In Exercises 3 – 13, find the arc length of the funcƟon on the
given interval.

3. f(x) = x on [0, 1].

4. f(x) =
√
8x on [−1, 1].

5. f(x) =
1
3
x3/2 − x1/2 on [0, 1].

6. f(x) =
1
12

x3 +
1
x
on [1, 4].

7. f(x) = 2x3/2 − 1
6
√
x on [0, 9].

8. f(x) = cosh x on [− ln 2, ln 2].

9. f(x) =
1
2
(
ex + e−x) on [0, ln 5].

10. f(x) =
1
12

x5 +
1
5x3

on [.1, 1].

11. f(x) = ln
(
sin x

)
on [π/6, π/2].

12. f(x) = ln
(
cos x

)
on [0, π/4].

In Exercises 13 – 21, set up the integral to compute the arc
length of the funcƟon on the given interval. Do not evaluate
the integral.

13. f(x) = x2 on [0, 1].

14. f(x) = x10 on [0, 1].

15. f(x) =
√
x on [0, 1].

16. f(x) = ln x on [1, e].

17. f(x) =
√
1− x2 on [−1, 1]. (Note: this describes the top

half of a circle with radius 1.)

18. f(x) =
√

1− x2/9 on [−3, 3]. (Note: this describes the top
half of an ellipse with a major axis of length 6 and a minor
axis of length 2.)

19. f(x) =
1
x
on [1, 2].

20. f(x) = sec x on [−π/4, π/4].

In Exercises 21 – 29, use Simpson’s Rule, with n = 4, to ap-
proximate the arc length of the funcƟon on the given interval.
Note: these are the same problems as in Exercises 13–20.

21. f(x) = x2 on [0, 1].

22. f(x) = x10 on [0, 1].

23. f(x) =
√
x on [0, 1]. (Note: f ′(x) is not defined at x = 0.)

24. f(x) = ln x on [1, e].

25. f(x) =
√
1− x2 on [−1, 1]. (Note: f ′(x) is not defined at

the endpoints.)

26. f(x) =
√

1− x2/9 on [−3, 3]. (Note: f ′(x) is not defined
at the endpoints.)

27. f(x) =
1
x
on [1, 2].

28. f(x) = sec x on [−π/4, π/4].

In Exercises 29 – 33, find the Surface Area of the described
solid of revoluƟon.

29. The solid formed by revolving y = 2x on [0, 1] about the
x-axis.

30. The solid formed by revolving y = x2 on [0, 1] about the
y-axis.

31. The solid formed by revolving y = x3 on [0, 1] about the
x-axis.

32. The solid formed by revolving y =
√
x on [0, 1] about the

x-axis.

33. The sphere formed by revolving y =
√
1− x2 on [−1, 1]

about the x-axis.
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Note: Mass and weight are closely re-
lated, yet different, concepts. The mass
m of an object is a quanƟtaƟve measure
of that object’s resistance to acceleraƟon.
The weight w of an object is a measure-
ment of the force applied to the object by
the acceleraƟon of gravity g.
Since the two measurements are pro-

porƟonal, w = m · g, they are oŌen
used interchangeably in everyday conver-
saƟon. When compuƟng Work, one must
be careful to note which is being referred
to. When mass is given, it must be mulƟ-
plied by the acceleraƟon of gravity to ref-
erence the related force.

7.5 Work

7.5 Work
Work is the scienƟfic term used to describe the acƟon of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the Newton, (kg·m/s2), and the SI unit of distance is
a meter (m). The fundamental unit of work is one Newton–meter, or a joule
(J). That is, applying a force of one Newton for one meter performs one joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (lb) and distance is measured in feet (Ō), hence work is measured in
Ō–lb.

When force is constant, the measurement of work is straighƞorward. For
instance, liŌing a 200 lb object 5 Ō performs 200 · 5 = 1000 Ō–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 Ō rope up a verƟcal face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force funcƟon on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by parƟƟoning [a, b] into subinter-
vals a = x1 < x2 < · · · < xn+1 = b and assuming that F is constant on each
subinterval. Let ci be a value in the i th subinterval [xi, xi+1]. Then the work done
on this interval is approximatelyWi ≈ F(ci) · (xi+1 − xi) = F(ci)∆xi, a constant
force× the distance over which it is applied. The total work is

W =
n∑

i=1

Wi ≈
n∑

i=1

F(ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero give an exact value of work which can be evaluated through a definite
integral.

.

.

.
Key Idea 29 Work

Let F(x) be a conƟnuous funcƟon on [a, b] describing the amount of force
being applied to an object in the direcƟon of travel from distance x = a
to distance x = b. The total workW done on [a, b] is

W =

∫ b

a
F(x) dx.

Notes:
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Chapter 7 ApplicaƟons of IntegraƟon

.. Example 217 CompuƟng work performed: applying variable force
Howmuch work is performed pulling a 60 m climbing rope up a cliff face, where
the rope has a mass of 66 g/m?

SÊ½çã®ÊÄ Weneed to create a force funcƟon F(x)on the interval [0, 60].
To do so, we must first decide what x is measuring: it is the length of the rope
sƟll hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convenƟon that x is the
amount of rope pulled in. This seems to match intuiƟon beƩer; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope sƟll hanging is 60−x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The the mass of the
rope sƟll hanging is 0.066(60− x) kg; mulƟplying this mass by the acceleraƟon
of gravity, 9.8 m/s2, gives our variable force funcƟon

F(x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0
0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in liŌing the enƟre rope 60 meters.
The rope weights 60× 0.066× 9.8 = 38.808 N, so the work applying this force
for 60 meters is 60× 38.808 = 2, 328.48 J. This is exactly twice the work calcu-
lated before (and we leave it to the reader to understand why.) ..

.. Example 218 ..CompuƟng work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

SÊ½çã®ÊÄ From Example 217 we know the total work performed is
11, 642.4 J. We want to find a height h such that the work in pulling the rope
from a height of x = 0 to a height of x = h is 5821.2, half the total work. Thus
we want to solve the equaƟon

∫ h

0
6.468(60− x) dx = 5821.2

Notes:
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Note: In Example 218, we find that half of
the work performed in pulling up a 60 m
rope is done in the last 42.43 m. Why is it
not coincidental that 60/

√
2 = 42.43?

7.5 Work

for h. ∫ h

0
6.468(60− x) dx = 5821.2

(
388.08x− 3.234x2

) ∣∣∣h
0
= 5821.2

388.08h− 3.234h2 = 5821.2

−3.234h2 + 388.08h− 5821.2 = 0.

Apply the QuadraƟc Formula.

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57. Thus about
half the work is done pulling up the first 17.5 m; the other half of the work is
done pulling up the remaining 42.43 m. ...

.. Example 219 ..CompuƟng work performed: applying variable force
A box of 100 lb of sand is being pulled up at a uniform rate a distance of 50 Ō
over 1 minute. The sand is leaking from the box at a rate of 1 lb/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 lb/Ō.

1. How much work is done liŌing just the rope?

2. How much work is done liŌing just the box and sand?

3. What is the total amount of work performed?

SÊ½çã®ÊÄ

1. We start by forming the force funcƟon Fr(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is Fr(x) = 0.2(50 − x) = 10 − 0.2x. (Note that we do not
have to include the acceleraƟon of gravity here, for theweight of the rope
per foot is given, not its mass per meter as before.) The work performed
liŌing the rope is

Wr =

∫ 50

0
(10− 0.2x) dx = 250 Ō–lb.

Notes:
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Chapter 7 ApplicaƟons of IntegraƟon

2. The sand is leaving the box at a rate of 1 lb/s. As the verƟcal trip is to take
oneminute, we know that 60 lbwill have leŌwhen the box reaches its final
height of 50 Ō. Again leƫng x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x = 0,
the sand weight is 100 lb, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 lb, producing the point (50, 40). The slope of
this line is 100−40

0−50 = −1.2, giving the equaƟon of the weight of the sand
at height x as w(x) = −1.2x+ 100. The box itself weighs a constant 5 lb,
so the total force funcƟon is Fb(x) = −1.2x+105. IntegraƟng from x = 0
to x = 50 gives the work performed in liŌing box and sand:

Wb =

∫ 50

0
(−1.2x+ 105) dx = 3750 Ō–lb.

3. The total work is the sum of Wr and Wb: 250 + 3750 = 4000 Ō–lb. We
can also arrive at this via integraƟon:

W =

∫ 50

0
(Fr(x) + Fb(x)) dx

=

∫ 50

0
(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0
(−1.4x+ 115) dx

= 4000 Ō–lb....

Hooke’s Law and Springs

Hooke’s Law states that the force required to compress or stretch a spring x
units from its natural length is proporƟonal to x; that is, this force is F(x) = kx
for some constant k. For example, if a force of 1 N stretches a given spring
2 cm, then a force of 5 N will stretch the spring 10 cm. ConverƟng the dis-
tances to meters, we have that stretching a this spring 0.02 m requires a force
of F(0.02) = k(0.02) = 1 N, hence k = 1/0.02 = 50 N/m.

.. Example 220 ..CompuƟng work performed: stretching a spring
A force of 20 lb stretches a spring from a length of 7 inches to a length of 12
inches. How much work was performed in stretching the spring to this length?

SÊ½çã®ÊÄ In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care
that 20 lb of force stretches the spring to a length of 12 inches, but rather that

Notes:
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Fluid lb/Ō3 kg/m3

Concrete 150 2400
Fuel Oil 55.46 890.13
Gasoline 45.93 737.22
Iodine 307 4927

Methanol 49.3 791.3
Mercury 844 13546
Milk 63.6–65.4 1020 – 1050
Water 62.4 1000

Figure 7.32: Weight and Mass densiƟes

7.5 Work

a force of 20 lb stretches the spring by 5 in. This is illustrated in Figure 7.31;
we only measure the change in the spring’s length, not the overall length of the
spring.
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Figure 7.31: IllustraƟng the important aspects of stretching a spring in compuƟng work
in Example 220.

ConverƟng the units of length to feet, we have

F(5/12) = 5/12k = 20 lb.

Thus k = 48 lb/Ō and F(x) = 48x.
We compute the total work performed by integraƟng F(x) from x = 0 to

x = 5/12:

W =

∫ 5/12

0
48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ≈ 4.1667 Ō–lb....

Pumping Fluids

Another useful example of the applicaƟon of integraƟon to compute work
comes in the pumping of fluids, oŌen illustrated in the context of emptying a
storage tank by pumping the fluid out the top. This situaƟon is different than
our previous examples for the forces involved are constant. AŌer all, the force
required to move one cubic foot of water (about 62.4 lb) is the same regardless
of its locaƟon in the tank. What is variable is the distance that cubic foot of
water has to travel; water closer to the top travels less distance than water at
the boƩom, producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Notes:
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order to compute the work required to
empty it in Example 221.

Chapter 7 ApplicaƟons of IntegraƟon

.. Example 221 CompuƟng work performed: pumping fluids
A cylindrical storage tank with a radius of 10 Ō and a height of 30 Ō is filled with
water, which weighs approximately 62.4 lb/Ō3. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

SÊ½çã®ÊÄ Wewill refer oŌen to Figure 7.33which illustrates the salient
aspects of this problem.

We start aswe oŌen do: we parƟƟon an interval into subintervals. We orient
our tank verƟcally since this makes intuiƟve sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y-interval [0, 30] into n subintervals as

0 = y1 < y2 < · · · < yn+1 = 30.

Consider the workWi of pumping only the water residing in the i th subinterval,
illustrated in Figure 7.33. The force required to move this water is equal to its
weight which we calculate as volume × density. The volume of water in this
subinterval is Vi = 102π∆yi; its density is 62.4 lb/Ō3. Thus the required force is
6240π∆yi lb.

We approximate the distance the force is applied by using any y-value con-
tained in the i th subinterval; for simplicity, we arbitrarily use yi for now (it will
not maƩer later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 Ō. Thus the distance the water at
height yi travels is 35− yi Ō.

In all, the approximate work Wi peformed in moving the water in the i th
subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi),

and the total work performed is

W ≈
n∑

i=1

Wi =
n∑

i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

W =

∫ 30

0
6240π(35− y) dy

= (6240π
(
35y− 1/2y2

) ∣∣∣30
0

= 11, 762, 123 Ō–lb

≈ 1.176× 107 Ō–lb...

Notes:
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Figure 7.35: A graph of the conical water
tank in Example 222.

7.5 Work

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.34 shows the tank from
Example 221 without the i th subinterval idenƟfied. Instead, we just draw one
differenƟal element. This helps establish the height a small amount of water
must travel along with the force required to move it (where the force is volume
× density).

We demonstrate the concepts again in the next examples.

.. Example 222 CompuƟng work performed: pumping fluids
A conicalwater tank has its top at ground level and its base 10 feet belowground.
The radius of the cone at ground level is 2 Ō. It is filled with water weighing 62.4
lb/Ō3 and is to be empƟed by pumping thewater to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

SÊ½çã®ÊÄ The conical tank is sketched in Figure 7.35. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the convenƟon
of the wording given in the problem and let y = 0 represent ground level and
hence y = −10 represents the boƩom of the tank. The actual “height” of the
water does not maƩer; rather, we are concerned with the distance the water
travels.

The figure also sketches a differenƟal element, a cross–secƟonal circle. The
radius of this circle is variable, depending on y. When y = −10, the circle has
radius 0; when y = 0, the circle has radius 2. These two points, (−10, 0) and
(0, 2), allow us to find the equaƟon of the line that gives the radius of the cross–
secƟonal circle, which is r(y) = 1/5y + 2. Hence the volume of water at this
height is V(y) = π(1/5y + 2)2dy, where dy represents a very small height of
the differenƟal element. The force required to move the water at height y is
F(y) = 62.4× V(y).

The distance the water at height y travels is given by h(y) = 3− y. Thus the
total work done in pumping the water from the tank is

W =

∫ 0

−10
62.4π(1/5y+ 2)2(3− y) dy

= 62.4π
∫ 0

−10

(
− 1
25

y3 − 17
25

y2 − 8
5
y+ 12

)
dy

= 62.2π · 220
3

≈ 14, 376 Ō–lb.
..

Notes:
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Figure 7.36: The cross–secƟon of a swim-
ming pool filled with water in Example
223.
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Figure 7.37: OrienƟng the pool and show-
ing differenƟal elements for Example 223.
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.. Example 223 CompuƟng work performed: pumping fluids
A rectangular swimming pool is 20 Ō wide and has a 3 Ō “shallow end” and a 6 Ō
“deep end.” It is to have its water pumped out to a point 2 Ō above the current
top of the water. The cross–secƟonal dimensions of the water in the pool are
given in Figure 7.36; note that the dimensions are for the water, not the pool
itself. Compute the amount of work performed in draining the pool.

SÊ½çã®ÊÄ For the purposes of this problem we choose to set y = 0
to represent the boƩom of the pool, meaning the top of the water is at y = 6.
Figure 7.37 shows the pool oriented with this y-axis, along with 2 differenƟal
elements as the pool must be split into two different regions.

The top region lies in the y-interval of [3, 6], where the length of the differen-
Ɵal element is 25 Ō as shown. As the pool is 20 Ō wide, this differenƟal element
represents a this slice of water with volume V(y) = 20 · 25 · dy. The water is
to be pumped to a height of y = 8, so the height funcƟon is h(y) = 8 − y. The
work done in pumping this top region of water is

Wt = 62.4
∫ 6

3
500(8− y) dy = 327, 600 Ō–lb.

The boƩom region lies in the y-interval of [0, 3]; we need to compute the
length of the differenƟal element in this interval.

One end of the differenƟal element is at x = 0 and the other is along the line
segment joining the points (10, 0) and (15, 3). The equaƟon of this line is y =
3/5(x−10); as we will be integraƟng with respect to y, we rewrite this equaƟon
as x = 5/3y + 10. So the length of the differenƟal element is a difference of
x-values: x = 0 and x = 5/3y+ 10, giving a length of x = 5/3y+ 10.

Again, as the pool is 20 Ō wide, this differenƟal element represents a thin
slice of water with volume V(y) = 20 · (5/3y + 10) · dy; the height funcƟon is
the same as before at h(y) = 8− y. The work performed in emptying this part
of the pool is

Wb = 62.4
∫ 3

0
20(5/3y+ 10)(8− y) dy = 299, 520 Ō–lb.

The total work in empyƟng the pool is

W = Wb +Wt = 327, 600+ 299, 520 = 627, 120 Ō–lb.

NoƟce how the emptying of the boƩom of the pool performs almost as much
work as emptying the top. The top porƟon travels a shorter distance but has
more water. In the end, this extra water produces more work. ..

Notes:
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Exercises 7.5
Terms and Concepts
1. What are the typical units of work?

2. If a man has a mass of 80 kg on Earth, will his mass on the
moon be bigger, smaller, or the same?

3. If a woman weighs 130 lb on Earth, will her weight on the
moon be bigger, smaller, or the same?

Problems
4. A 100 Ō rope, weighing 0.1 lb/Ō, hangs over the edge of a

tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

5. A 50 m rope, with a mass density of 0.2 kg/m, hangs over
the edge of a tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much work is done pulling in the first 20 m?

6. A rope of length ℓ Ō hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope has a weight density of d lb/Ō.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

7. A 20 m rope with mass density of 0.5 kg/m hangs over the
edge of a 10 m building. How much work is done pulling
the rope to the top?

8. A crane liŌs a 2,000 lb load verƟcally 30 Ō with a 1” cable
weighing 1.68 lb/Ō.

(a) How much work is done liŌing the cable alone?

(b) How much work is done liŌing the load alone?

(c) Could one conclude that the work done liŌing the ca-
ble is negligible compared to thework done liŌing the
load?

9. A 100 lb bag of sand is liŌed uniformly 120 Ō in oneminute.
Sand leaks from the bag at a rate of 1/4 lb/s. What is the
total work done in liŌing the bag?

10. A boxweighing 2 lb liŌs 10 lb of sand verƟcally 50 Ō. A crack
in the box allows the sand to leak out such that 9 lb of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in liŌing
the box and sand?

11. A force of 1000 lb compresses a spring 3 in. Howmuchwork
is performed in compressing the spring?

12. A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

13. A force of 50 lb compresses a spring from 18 in to 12 in.
How much work is performed in compressing the spring?

14. A force of 20 lb stretches a spring from 6 in to 8 in. How
much work is performed in stretching the spring?

15. A force of 7 N stretches a spring from 11 cm to 21 cm. How
much work is performed in stretching the spring?

16. A force of f N stretches a spring d m. How much work is
performed in stretching the spring?

17. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.

How much work is done in liŌing the box 1.5 Ō (i.e, the
spring will be stretched 1 Ō beyond its natural length)?

18. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.

How much work is done in liŌing the box 6 in (i.e, bringing
the spring back to its natural length)?

19. A 5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass density of 737.22 kg/m3. Com-
pute the total work performed in pumping all the gasoline
to the top of the tank.

20. A 6 Ō cylindrical tank with a radius of 3 Ō is filled with wa-
ter, which has a weight density of 62.4 lb/Ō3. The water is
to be pumped to a point 2 Ō above the top of the tank.

(a) How much work is performed in pumping all the wa-
ter from the tank?

(b) How much work is performed in pumping 3 Ō of wa-
ter from the tank?

(c) At what point is 1/2 of the total work done?

21. A gasoline tanker is filled with gasoline with a weight den-
sity of 45.93 lb/Ō3. The dispensing valve at the base is
jammed shut, forcing the operator to empty the tank via
pumping the gas to a point 1 Ō above the top of the tank.
Assume the tank is a perfect cylinder, 20 Ō long with a di-
ameter of 7.5 Ō.

How much work is performed in pumping all the gasoline
from the tank?
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22. A fuel oil storage tank is 10 Ō deep with trapezoidal sides,
5 Ō at the top and 2 Ō at the boƩom, and is 15 Ō wide (see
diagram below). Given that fuel oil weighs 55.46 lb/Ō3, find
the work performed in pumping all the oil from the tank to
a point 3 Ō above the top of the tank.

..

10

.

2

.

15

.

5

23. A conical water tank is 5 m deep with a top radius of 3 m.
(This is similar to Example 222.) The tank is filled with pure
water, with a mass density of 1000 kg/m3.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top 2.5 m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

24. A water tank has the shape of a truncated cone, with di-
mensions given below, and is filledwithwaterwith aweight
density of 62.4 lb/Ō3. Find the work performed in pumping
all water to a point 1 Ō above the top of the tank.

.. 2 Ō.

5 Ō

.

10 Ō

25. A water tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
density of 1000 kg/m3. Find the work performed in pump-
ing all water to a point 5 m above the top of the tank.

..
2 m
.

2 m

.

7 m

26. A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with wa-
ter with a mass density of 1000 kg/m3. Find the work per-
formed in pumping all water to a point 1 m above the top
of the tank.

...
5 m
..

5 m

......

2 m

..

2 m

.

9 m
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Figure 7.38: A cylindrical tank in Example
224.
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Ō

Figure 7.39: A rectangular tank in Exam-
ple 224.

7.6 Fluid Forces

7.6 Fluid Forces
In the unfortunate situaƟon of a car driving into a body of water, the conven-
Ɵonal wisdom is that the water pressure on the doors will quickly be so great
that they will be effecƟvely unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiƟng unƟl
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
opƟons.)

How can this be true? How much force does it take to open the door of
a submerged car? In this secƟon we will find the answer to this quesƟon by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equaƟons:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definiƟon.

.

.

.
DefiniƟon 26 Fluid Pressure

Let w be the weight–density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definiƟon to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

.. Example 224 ..CompuƟng fluid force

1. A cylindrical storage tank has a radius of 2 Ō and holds 10 Ō of a fluid with
a weight–density of 50 lb/Ō3. (See Figure 7.38.) What is the force exerted
on the base of the cylinder by the fluid?

2. A rectangular tank whose base is a 5 Ō square has a circular hatch at the
boƩom with a radius of 2 Ō. The tank holds 10 Ō of a fluid with a weight–
density of 50 lb/Ō3. (See Figure 7.39.) What is the force exerted on the
hatch by the fluid?

SÊ½çã®ÊÄ

1. Using DefiniƟon 26, we calculate that the pressure exerted on the cylin-
der’s base isw · d = 50 lb/Ō3 × 10 Ō = 500 lb/Ō2. The area of the base is

Notes:
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Figure 7.41: A thin plate in the shape of
an isosceles triangle in Example 225.

7.6 Fluid Forces

length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w× ℓ(ci) ·∆yi.

The total force is then

F =
n∑

i=1

Fi ≈
n∑

i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to 0; we evaluate this limit with a definite
integral.

.

.

.
Key Idea 30 Fluid Force on a VerƟcally Oriented Plate

Let a verƟcally oriented plate be submerged in a fluid with weight–
density w where the top of the plate is at y = b and the boƩom is at
y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =
∫ b

a
w · (−y) · ℓ(y) dy.

2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate by
the fluid is

F =
∫ b

a
w · d(y) · ℓ(y) dy.

.. Example 225 ..Finding fluid force
Consider a thin plate in the shape of an isosceles triangle as shown in Figure 7.41
submerged in water with a weight–density of 62.4 lb/Ō3. If the boƩom of the
plate is 10 Ō below the surface of the water, what is the total fluid force exerted
on this plate?

SÊ½çã®ÊÄ We approach this problem in two different ways to illustrate
the different ways Key Idea 30 can be implemented. First we will let y = 0 rep-
resent the surface of the water, then we will consider an alternate convenƟon.

Notes:
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Figure 7.42: Sketching the triangular
plate in Example 225 with the convenƟon
that the water level is at y = 0.
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Figure 7.43: Sketching the triangular
plate in Example 225 with the convenƟon
that the base of the triangle is at (0, 0).
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1. We let y = 0 represent the surface of the water; therefore the boƩom of
the plate is at y = −10. We center the triangle on the y-axis as shown in
Figure 7.42. The depth of the plate at y is−y as indicated by the Key Idea.
We now consider the length of the plate at y.
We need to find equaƟons of the leŌ and right edges of the plate. The
right hand side is a line that connects the points (0,−10) and (2,−6):
that line has equaƟon x = 1/2(y+ 10). (Find the equaƟon in the familiar
y = mx+b format and solve for x.) Likewise, the leŌhand side is described
by the line x = −1/2(y + 10). The total length is the distance between
these two lines: ℓ(y) = 1/2(y+ 10)− (−1/2(y+ 10)) = y+ 10.
The total fluid force is then:

F =
∫ −6

−10
62.4(−y)(y+ 10) dy

= 62.4 · 176
3

≈ 3660.8 lb.

2. SomeƟmes it seems easier to orient the thin plate nearer the origin. For
instance, consider the convenƟon that the boƩom of the triangular plate
is at (0, 0), as shown in Figure 7.43. The equaƟons of the leŌ and right
hand sides are easy to find. They are y = 2x and y = −2x, respecƟvely,
which we rewrite as x = 1/2y and x = −1/2y. Thus the length funcƟon
is ℓ(y) = 1/2y− (−1/2y) = y.
As the surface of the water is 10 Ō above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth funcƟon is the
distance between y = 10 and y; d(y) = 10 − y. We compute the total
fluid force as:

F =
∫ 4

0
62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the plate in
the coordinate plane as long as we are consistent. ...

.. Example 226 ..Finding fluid force
Find the total fluid force on a car door submerged up to the boƩomof its window
in water, where the car door is a rectangle 40” long and 27” high (based on the
dimensions of a 2005 Fiat Grande Punto.)

SÊ½çã®ÊÄ The car door, as a rectangle, is drawn in Figure 7.44. Its
length is 10/3 Ō and its height is 2.25 Ō. We adopt the convenƟon that the

Notes:
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Figure 7.44: Sketching a submerged car
door in Example 226.
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Figure 7.45: Measuring the fluid force on
an underwater porthole in Example 227.

7.6 Fluid Forces

top of the door is at the surface of the water, both of which are at y = 0. Using
the weight–density of water of 62.4 lb/Ō3, we have the total force as

F =
∫ 0

−2.25
62.4(−y)10/3 dy

=

∫ 0

−2.25
−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a car
door while seated inside, making the door effecƟvely impossible to open. This
is counter–intuiƟve as most assume that the door would be relaƟvely easy to
open. The truth is that it is not, hence the survival Ɵps menƟoned at the begin-
ning of this secƟon. ...

.. Example 227 ..Finding fluid force
An underwater observaƟon tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each verƟcally oriented porthole is to
have a 3 Ō diameter whose center is to be located 50 Ō underwater. Find the
total fluid force exerted on each porthole. Also, compute the fluid force on a
horizontally oriented porthole that is under 50 Ō of water.

SÊ½çã®ÊÄ We place the center of the porthole at the origin, meaning
the surface of thewater is at y = 50 and the depth funcƟonwill be d(y) = 50−y;
see Figure 7.45

The equaƟon of a circle with a radius of 1.5 is x2 + y2 = 2.25; solving for
x we have x = ±

√
2.25− y2, where the posiƟve square root corresponds to

the right side of the circle and the negaƟve square root corresponds to the leŌ
side of the circle. Thus the length funcƟon at depth y is ℓ(y) = 2

√
2.25− y2.

IntegraƟng on [−1.5, 1.5] we have:

F = 62.4
∫ 1.5

−1.5
2(50− y)

√
2.25− y2 dy

= 62.4
∫ 1.5

−1.5

(
100
√

2.25− y2 − 2y
√

2.25− y2
)
dy

= 6240
∫ 1.5

−1.5

(√
2.25− y2

)
dy− 62.4

∫ 1.5

−1.5

(
2y
√

2.25− y2
)
dy

Notes:
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The second integral above can be evaluated using SubsƟtuƟon. Let u = 2.25−y2
with du = −2y dy. The new bounds are: u(−1.5) = 0 and u(1.5) = 0; the new
integral will integrate from u = 0 to u = 0, hence the integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus the
first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total fluid force
on a verƟcally oriented porthole is 22, 054 lb.

Finding the force on a horizontally oriented porthole ismore straighƞorward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a verƟcally oriented circle whose center is at depth d is the
same as force applied to a horizontally oriented circle at depth d. ...

Notes:
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Exercises 7.6
Terms and Concepts
1. State in your own words Pascal’s Principle.
2. State in your own words how pressure is different from

force.

Problems
In Exercises 3 – 12, find the fluid force exerted on the given
plate, submerged in water with a weight density of 62.4
lb/Ō3.

3.

..
2 Ō
.

2 Ō

.

1 Ō

4.

..
1 Ō
.

2 Ō

.

1 Ō

5.

..

4 Ō

.

5 Ō

.

6 Ō

6.

..

4 Ō

.

5 Ō

.

6 Ō

7.

.. 2 Ō.

5 Ō

8.
.. 4 Ō.

5 Ō

9.

..

4 Ō

.2 Ō .

5 Ō

10.

.. 4 Ō.

2 Ō

.

5 Ō

11.

..
2 Ō

.

2 Ō

.

1 Ō

12.

..
2 Ō

.

2 Ō

.

1 Ō
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In Exercises 13 – 18, the side of a container is pictured. Find
the fluid force exerted on this plate when the container is full
of:

1. water, with a weight density of 62.4 lb/Ō3, and
2. concrete, with a weight density of 150 lb/Ō3.

13.

..
3 Ō

.

5 Ō

14.

..

4 Ō

.
y = x2

.

4 Ō

15.

..
4 Ō
.

y = 4 − x2

.

4 Ō

16.

..2 Ō.

y = −
√
1 − x2

17.
..

2 Ō
.

y =
√
1 − x2

18.

..6 Ō.

y = −
√
9 − x2

19. How deep must the center of a verƟcally oriented circular
plate with a radius of 1 Ō be submerged in water, with a
weight density of 62.4 lb/Ō3, for the fluid force on the plate
to reach 1,000 lb?

20. How deep must the center of a verƟcally oriented square
plate with a side length of 2 Ō be submerged in water, with
a weight density of 62.4 lb/Ō3, for the fluid force on the
plate to reach 1,000 lb?
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NotaƟon: WeuseN to describe the set of
natural numbers, that is, the integers 1, 2,
3, …

Factorial: The expression 3! refers to the
number 3 · 2 · 1 = 6.

In general, n! = n·(n−1)·(n−2) · · · 2·1,
where n is a natural number.

We define 0! = 1. While this does not
immediately make sense, it makes many
mathemaƟcal formulas work properly.

.....

an =
3n

n!

.
1

.
2

.
3

.
4

.

1

.

2

.

3

.

4

.

5

. n.

y

Figure 8.1: Ploƫng a sequence from Ex-
ample 228.

8: S�Øç�Ä��Ý �Ä� S�Ù®�Ý

8.1 Sequences

We commonly refer to a set of events that occur one aŌer the other as a se-
quence of events. In mathemaƟcs, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one aŌer the other.”

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and oŌen this can be done. For instance, the
sequence above could be described by the funcƟon a(n) = 2n, for the values of
n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal definiƟon of a sequence.

.

.

.
DefiniƟon 27 Sequence

A sequence is a funcƟon a(n) whose domain is N. The range of a
sequence is the set of all disƟnct values of a(n).

The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….

A sequence a(n) is oŌen denoted as {an}.

.. Example 228 ..LisƟng terms of a sequence
List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4+(−1)n} 3. {an} =

{
(−1)n(n+1)/2

n2

}
SÊ½çã®ÊÄ

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9
2
; a3 =

33

3!
=

9
2
; a4 =

34

4!
=

27
8

We can plot the terms of a sequence with a scaƩer plot. The “x”-axis is
used for the values of n, and the values of the terms are ploƩed on the
y-axis. To visualize this sequence, see Figure 8.1.
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Figure 8.2: Ploƫng sequences in Example
228.
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2. a1 = 4+ (−1)1 = 3; a2 = 4+ (−1)2 = 5;
a3 = 4+(−1)3 = 3; a4 = 4+(−1)4 = 5. Note that the range of this
sequence is finite, consisƟng of only the values 3 and 5. This sequence is
ploƩed in Figure 8.2 (a).

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4

a3 =
(−1)3(4)/2

32
=

1
9

a4 =
(−1)4(5)/2

42
=

1
16

;

a5 =
(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the paƩern of signs is “−,−,+,
+,−,−, . . ., due to the fact that the exponent of−1 is a special quadraƟc.
This sequence is ploƩed in Figure 8.2 (b).

...

.. Example 229 ..Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a funcƟon that describes
each of the given sequences.

1. 2, 5, 8, 11, 14, . . .

2. 2,−5, 10,−17, 26,−37, . . .

3. 1, 1, 2, 6, 24, 120, 720, . . .

4.
5
2
,
5
2
,
15
8
,
5
4
,
25
32

, . . .

SÊ½çã®ÊÄ Weshould first note that there is never exactly one funcƟon that
describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

1. Note how each term is 3more than the previous one. This implies a linear
funcƟon would be appropriate: a(n) = an = 3n+b for some appropriate
value of b. As we want a1 = 2, we set b = −1. Thus an = 3n− 1.

2. First noƟce how the sign changes from term to term. This is most com-
monly accomplished bymulƟplying the terms by either (−1)n or (−1)n+1.
Using (−1)n mulƟplies the odd terms by (−1); using (−1)n+1 mulƟplies
the even terms by (−1). As this sequence has negaƟve even terms, we
will mulƟply by (−1)n+1.

Notes:
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AŌer this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a paƩern of some sort: what do the numbers 2, 5,
10, 17, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
That is, 2 = 11 + 1, 5 = 22 + 1, 10 = 32 + 1, etc. Thus our formula is
an = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial funcƟon will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start with n = 1,
we cannot write an = n!, for this misses the 0! term. Instead, we shiŌ by
1, and write an = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are the
same, but a liƩle “sleuthing” will help. NoƟce how the terms in the nu-
merator are always mulƟples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as an = 5n

2n work?

When n = 1, we see that we indeed get 5/2 as desired. When n = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence....

A common mathemaƟcal endeavor is to create a new mathemaƟcal object
(for instance, a sequence) and then apply previously knownmathemaƟcs to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will invesƟgate what it means to find the limit of a sequence.

.

.

.
DefiniƟon 28 Limit of a Sequence, Convergent, Divergent

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
anm can be found such that |an − L| < ε for all n > m, then we say the
limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definiƟon states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjecƟve
terms, but hopefully the intent is clear.

Notes:
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Figure 8.3: ScaƩer plots of the sequences
in Example 230.
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This definiƟon is reminiscent of the ε–δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definiƟon; we
do so here as well.

.

.

.
Theorem 55 Limit of a Sequence

Let {an} be a sequence and let f(x) be a funcƟon where f(n) = an for all
n in N.

1. If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

2. If lim
x→∞

f(x) does not exist, then {an} diverges.

When we considered limits before, the domain of the funcƟon was an inter-
val of real numbers. Now, as we consider limits, the domain is restricted to N,
the natural numbers. Theorem 55 states that this restricƟon of the domain does
not affect the outcome of the limit and whatever tools we developed in Chapter
1 to evaluate limits can be applied here as well.

.. Example 230 ..Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1
n2 − 1000

}
2. {an} = {cos n} 3. {an} =

{
(−1)n

n

}
SÊ½çã®ÊÄ

1. Using Theorem 11, we can state that lim
x→∞

3x2 − 2x+ 1
x2 − 1000

= 3. (We could

have also directly applied l’Hôpital’s Rule.) Thus the sequence {an} con-
verges, and its limit is 3. A scaƩer plot of every 5 values of an is given in
Figure 8.3 (a). The values of an vary widely near n = 30, ranging from
about−73 to 125, but as n grows, the values approach 3.

2. The limit lim
x→∞

cos x does not exist, as the funcƟon oscillates (and takes on
every value in [−1, 1] infinitely many Ɵmes). Thus we conclude that the
sequence {cos n} diverges. (And in this parƟcular case, since the domain
is restricted to N, no value of cos n is repeated!) This sequence is ploƩed
in Figure 8.3 (b); because only discrete values of cosine are ploƩed, it does
not bear strong resemblance to the familiar cosine wave.

3. We cannot actually apply Theorem55here, as the funcƟon f(x) = (−1)x/x

Notes:
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is not well defined. (What does (−1)
√
2 mean? In actuality, there is an an-

swer, but it involves complex analysis, beyond the scope of this text.) So
for now we say that we cannot determine the limit. (But we will be able
to very soon.) By looking at the plot in Figure 8.3 (c), we would like to
conclude that the sequence converges to 0. That is true, but at this point
we are unable to decisively say so....

It seems very clear that a sequence such as
{
(−1)n

n

}
converges to 0 but we

lack the formal tool to prove it. The following theorem gives us that tool.

.

.

.
Theorem 56 Absolute Value Theorem

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

.. Example 231 ..Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
SÊ½çã®ÊÄ

1. This appeared in Example 230. Wewant to apply Theorem 56, so consider
the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1
n

= 0.

Since this limit is 0, we can apply Theorem 56 and state that lim
n→∞

an = 0.

2. Because of the alternaƟng nature of this sequence (i.e., every other term

ismulƟplied by−1), we cannot simply look at the limit lim
x→∞

(−1)x(x+ 1)
x

.
We can try to apply the techniques of Theorem 56:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)
n

∣∣∣∣
= lim

n→∞

n+ 1
n

= 1.
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Figure 8.4: A plot of a sequence in Exam-
ple 231, part 2.

Chapter 8 Sequences and Series

Wehave concluded thatwhenwe ignore the alternaƟng sign, the sequence
approaches 1. This means we cannot apply Theorem 56; it states the the
limit must be 0 in order to conclude anything.
In fact, since we know that the signs of the terms alternate and we know
that the limit of |an| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and −1, meaning the sequence
diverges. A plot of this sequence is given in Figure 8.4....

We conƟnue our study of the limits of sequences by considering some of the
properƟes of these limits.

.

.

.
Theorem 57 ProperƟes of the Limits of Sequences

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K, and
let c be a real number.

1. lim
n→∞

(an ± bn) = L± K

2. lim
n→∞

(an · bn) = L · K

3. lim
n→∞

(an/bn) = L/K, K ̸= 0

4. lim
n→∞

c · an = c · L

.. Example 232 ..Applying properƟes of limits of sequences
Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1
n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1+

1
n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

SÊ½çã®ÊÄ We will use Theorem 57 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

0+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

Notes:
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Figure 8.5: A plot of {an} = {1/n} from
Example 233.
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Figure 8.6: A plot of {an} = {2n} from
Example 233.
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2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn · cn) =

e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does not
maƩer that wemulƟply each term by 1000; the sequence sƟll approaches
0. (It just takes longer to get close to 0.)...

There is more to learn about sequences than just their limits. We will also
study their range and the relaƟonships terms have with the terms that follow.
We start with some definiƟons describing properƟes of the range.

.

.

.
DefiniƟon 29 Bounded and Unbounded Sequences

A sequence {an} is said to be bounded if there exists real numbers m
andM such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists an M such
that an < M for all n in N; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definiƟon that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

.. Example 233 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1. {an} =

{
1
n

}
2. {an} = {2n}

SÊ½çã®ÊÄ

1. The terms of this sequence are always posiƟve but are decreasing, so we
have 0 < an < 2 for all n. Thus this sequence is bounded. Figure 8.5
illustrates this.

2. The terms of this sequence obviously grow without bound. However, it
is also true that these terms are all posiƟve, meaning 0 < an. Thus we
can say the sequence is unbounded, but also bounded below. Figure 8.6
illustrates this...

Notes:
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Note: Keep in mind what Theorem 58
does not say. It does not say that
bounded sequences must converge, nor
does it say that if a sequence does not
converge, it is not bounded.

Note: It is someƟmes useful to call
a monotonically increasing sequence
strictly increasing if an < an+1 for all
n; i.e, we remove the possibility that
subsequent terms are equal.
A similar statement holds for strictly de-
creasing.

Chapter 8 Sequences and Series

The previous example produces some interesƟng concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that
the sequence is bounded, using the following logic. First, “most” terms are near
0, so we could find some sort of bound on these terms (using DefiniƟon 28, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

.
.

.
Theorem 58 Convergent Sequences are Bounded

Let {an} be a convergent sequence. Then {an} is bounded.

In Example 232 we saw the sequence {bn} =
{
(1+ 1/n)n

}
, where it was

stated that lim
n→∞

bn = e. (Note that this is simply restaƟng part of Theorem 5.)
Even though it may be difficult to intuiƟvely grasp the behavior of this sequence,
we know immediately that it is bounded.

Another interesƟng concept to come out of Example 233 again involves the
sequence {1/n}. We stated, without proof, that the terms of the sequencewere
decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n + 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

.

.

.
DefiniƟon 30 Monotonic Sequences

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} is monotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence ismonotonic if it is monotonically increasing ormono-
tonically decreasing.

Notes:
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Figure 8.7: Plots of sequences in Example
234.
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.. Example 234 ..Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1
n

}

2. {an} =

{
n2 + 1
n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}

SÊ½çã®ÊÄ In each of the following, wewill examine an+1−an. If an+1−
an > 0, we conclude that an < an+1 and hence the sequence is increasing. If
an+1 − an < 0, we conclude that an > an+1 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a scaƩer plot of each sequence. These are useful as they sug-
gest a paƩern of monotonicity, but analyƟc work should be done to confirm a
graphical trend.

1. an+1 − an =
n+ 2
n+ 1

− n+ 1
n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)
< 0 for all n.

Since an+1−an < 0 for all n, we conclude that the sequence is decreasing.

2. an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 4n+ 1

(n+ 1)(n+ 2)
> 0 for all n.

Since an+1 − an > 0 for all n, we conclude the sequence is increasing. ..

3. We can clearly see in Figure 8.7 (c), where the sequence is ploƩed, that
it is not monotonic. However, it does seem that aŌer the first 4 terms
it is decreasing. To understand why, perform the same analysis as done
before:

Notes:
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Figure 8.8: A plot of {an} = {n2/n!} in
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an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8
n2 − 8n+ 17

− n2 − 9
n2 − 10n+ 26

=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0, therefore we
are only concerned with the numerator. Using the quadraƟc formula, we
can determine that −10n2 + 60n − 55 = 0 when n ≈ 1.13, 4.87. So for
n < 1.13, the sequence is decreasing. Since we are only dealing with the
natural numbers, this means that a1 > a2.

Between 1.13 and 4.87, i.e., for n = 2, 3 and 4, we have that an+1 >
an and the sequence is increasing. (That is, when n = 2, 3 and 4, the
numerator−10n2 + 60n+ 55 from the fracƟon above is> 0.)

When n > 4.87, i.e, for n ≥ 5, we have that −10n2 + 60n + 55 < 0,
hence an+1 − an < 0, so the sequence is decreasing.

In short, the sequence is simply not monotonic. However, it is useful to
note that for n ≥ 5, the sequence is monotonically decreasing.

4. Again, the plot in Figure 8.8 shows that the sequence is not monotonic,
but it suggests that it is monotonically decreasing aŌer the first term. We
perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!
When n = 1, the above expression is > 0; for n ≥ 2, the above expres-
sion is < 0. Thus this sequence is not monotonic, but it is monotonically
decreasing aŌer the first term....

Knowing that a sequence is monotonic can be useful. In parƟcular, if we
know that a sequence is bounded andmonotonic, we can conclude it converges!
Consider, for example, a sequence that ismonotonically decreasing and is bounded
below. We know the sequence is always geƫng smaller, but that there is a

Notes:
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bound to how small it can become. This is enough to prove that the sequence
will converge, as stated in the following theorem.

.

.

.
Theorem 59 Bounded Monotonic Sequences are Convergent

1. Let {an} be a bounded, monotonic sequence. Then {an} con-
verges; i.e., lim

n→∞
an exists.

2. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

3. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always posiƟve (i.e., bounded below by
0). Therefore we can conclude by Theorem 59 that the sequence converges. We
already knew this by other means, but in the following secƟon this theoremwill
become very useful.

Sequences are a great source of mathemaƟcal inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
quences and their formulae. (As of this wriƟng, there are 218,626 sequences
in the database.) Perusing this database quickly demonstrates that a single se-
quence can represent several different “real life” phenomena.

InteresƟng as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1 + a2 + a3 + · · · . Of course, one might immediately counter
with “Doesn’t this just add up to infinity?” Many Ɵmes, yes, but there are many
important cases where the answer is no. This is the topic of series, which we
begin to invesƟgate in the next secƟon.

Notes:
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Exercises 8.1
Terms and Concepts
1. Use your own words to define a sequence.
2. The domain of a sequence is the numbers.
3. Use your own words to describe the range of a sequence.
4. Describe what it means for a sequence to be bounded.

Problems
In Exercises 5 – 8, give the first five terms of the given se-
quence.

5. {an} =

{
4n

(n+ 1)!

}
6. {bn} =

{(
−3
2

)n}
7. {cn} =

{
− nn+1

n+ 2

}
8. {dn} =

{
1√
5

((
1+

√
5

2

)n

−
(
1−

√
5

2

)n
)}

In Exercises 9 – 12, determine the nth term of the given se-
quence.
9. 4, 7, 10, 13, 16, . . .

10. 3, −3
2
,
3
4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .

12. 1, 1,
1
2
,
1
6
,

1
24

,
1

120
, . . .

In Exercises 13 – 16, use the following informaƟon to deter-
mine the limit of the given sequences.

• {an} =

{
2n − 20

2n

}
; lim

n→∞
an = 1

• {bn} =

{(
1+

2
n

)n}
; lim

n→∞
bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20
7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1+

2
n

)n}
16. {an} =

{(
1+

2
n

)2n
}

In Exercises 17 – 28, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-
quence.

17. {an} =

{
(−1)n

n
n+ 1

}
18. {an} =

{
4n2 − n+ 5
3n2 + 1

}
19. {an} =

{
4n

5n

}

20. {an} =

{
n− 1
n

− n
n− 1

}
, n ≥ 2

21. {an} = {ln(n)}

22. {an} =

{
3n√
n2 + 1

}
23. {an} =

{(
1+

1
n

)n}
24. {an} =

{
5− 1

n

}
25. {an} =

{
(−1)n+1

n

}
26. {an} =

{
1.1n

n

}
27. {an} =

{
2n

n+ 1

}
28. {an} =

{
(−1)n

n2

2n − 1

}
In Exercises 29 – 34, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

29. {an} = {sin n}
30. {an} = {tan n}

31. {an} =

{
(−1)n

3n− 1
n

}
32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos n}
34. {an} = {2n − n!}
In Exercises 35 – 38, determine whether the sequence is
monotonically increasing or decreasing. If it is not, determine
if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}
36. {an} =

{
n2 − 6n+ 9

n

}
37. {an} =

{
(−1)n

1
n3

}
38. {an} =

{
n2

2n

}
39. Prove Theorem56; that is, use the definiƟonof the limit of a

sequence to show that if lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

40. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.
(b) Give an example where L = K.

41. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L
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8.2 Infinite Series

8.2 Infinite Series
Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the follow-
ing sums:

a1 = 1/2 = 1/2
a1 + a2 = 1/2+ 1/4 = 3/4

a1 + a2 + a3 = 1/2+ 1/4+ 1/8 = 7/8
a1 + a2 + a3 + a4 = 1/2+ 1/4+ 1/8+ 1/16 = 15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1
2n

= 1− 1
2n

.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the above,
we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that Sn =
1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
1−1/2n

)
= 1. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2n} is 1.

This example illustrates some interesƟng concepts that we explore in this
secƟon. We begin this exploraƟon with some definiƟons.

.

.

.
DefiniƟon 31 Infinite Series, nth ParƟal Sums, Convergence, Divergence

Let {an} be a sequence.

1. The sum
∞∑
n=1

an is an infinite series (or, simply series).

2. Let Sn =
n∑

i=1

ai; the sequence {Sn} is the sequence of nth parƟal sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑
n=1

an converges to L,

and we write
∞∑
n=1

an = L.

4. If the sequence {Sn} diverges, the series
∞∑
n=1

an diverges.

Notes:
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Using our new terminology, we can state that the series
∞∑
n=1

1/2n converges,

and
∞∑
n=1

1/2n = 1.

We will explore a variety of series in this secƟon. We start with two series
that diverge, showing how we might discern divergence.

.. Example 235 ..Showing series diverge

1. Let {an} = {n2}. Show
∞∑
n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑
n=1

bn diverges.

SÊ½çã®ÊÄ

1. Consider Sn, the nth parƟal sum.

Sn = a1 + a2 + a3 + · · ·+ an
= 12 + 22 + 32 · · ·+ n2.

By Theorem 37, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑
n=1

n2 diverges. It is

instrucƟve to write
∞∑
n=1

n2 = ∞ for this tells us how the series diverges: it

grows without bound.

A scaƩer plot of the sequences {an} and {Sn} is given in Figure 8.9(a).
The terms of {an} are growing, so the terms of the parƟal sums {Sn} are
growing even faster, illustraƟng that the series diverges.

Notes:

396



.....
5

.
10

.

100

.

200

.

300

. n.

y

.

..an. Sn

(a)

.....

5

.

10

.−1.

−0.5

.

0.5

.

1

.

n

.

y

.
..bn. Sn

(b)

Figure 8.9: ScaƩer plots relaƟng to Exam-
ple 235.

8.2 Infinite Series

2. Consider some of the parƟal sums Sn of {bn}:

S1 = 1
S2 = 0
S3 = 1
S4 = 0

This paƩern repeats; we find that Sn =

{
1 n is odd
0 n is even . As {Sn} oscil-

lates, repeaƟng 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn does not exist,

hence
∞∑
n=1

(−1)n+1 diverges.

A scaƩer plot of the sequence {bn} and the parƟal sums {Sn} is given in
Figure 8.9(b). When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

...

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this secƟon we will demonstrate
a few general techniques for determining convergence; later secƟons will delve
deeper into this topic.

Geometric Series

One important type of series is a geometric series.

.

.

.
DefiniƟon 32 Geometric Series

A geometric series is a series of the form

∞∑
n=0

rn = 1+ r+ r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.

We started this secƟon with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properƟes.

Notes:
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Chapter 8 Sequences and Series

.

.

.
Theorem 60 Convergence of Geometric Series

Consider the geometric series
∞∑
n=0

rn.

1. The nth parƟal sum is: Sn =
1− r n+1

1− r
.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

According to Theorem 60, the series
∞∑
n=0

1
2n

= 1+
1
2
+

1
4
+ · · · converges,

and
∞∑
n=0

1
2n

=
1

1− 1/2
= 2. This concurs with our introductory example; while

there we got a sum of 1, we skipped the first term of 1.

.. Example 236 ..Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

1.
∞∑
n=2

(
3
4

)n

2.
∞∑
n=0

(
−1
2

)n

3.
∞∑
n=0

3n

SÊ½çã®ÊÄ

1. Since r = 3/4 < 1, this series converges. By Theorem 60, we have that

∞∑
n=0

(
3
4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summaƟon in the given series: we are
to start with n = 2. Therefore we subtract off the first two terms, giving:

∞∑
n=2

(
3
4

)n

= 4− 1− 3
4
=

9
4
.

This is illustrated in Figure 8.10.

Notes:
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Figure 8.11: ScaƩer plots relaƟng to the
series in Example 236.

Note: Theorem 61 assumes that an+b ̸=
0 for all n. If an+ b = 0 for some n, then
of course the series does not converge re-
gardless of p as not all of the terms of the
sequence are defined.

8.2 Infinite Series

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 60,
∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

2
3
.

The parƟal sums of this series are ploƩed in Figure 8.11(a). Note how
the parƟal sums are not purely increasing as some of the terms of the
sequence {(−1/2)n} are negaƟve.

3. Since r > 1, the series diverges. (This makes “common sense”; we expect
the sum

1+ 3+ 9+ 27+ 81+ 243+ · · ·
to diverge.) This is illustrated in Figure 8.11(b)....

p–Series

Another important type of series is the p-series.

.

.

.
DefiniƟon 33 p–Series, General p–Series

1. A p–series is a series of the form

∞∑
n=1

1
np

, where p > 0.

2. A general p–series is a series of the form

∞∑
n=1

1
(an+ b)p

, where p > 0 and a, b are real numbers.

Like geometric series, one of the nice things about p–series is that they have
easy to determine convergence properƟes.

.

.

.
Theorem 61 Convergence of General p–Series

A general p–series
∞∑
n=1

1
(an+ b)p

will converge if, and only if, p > 1.

Notes:

399



Chapter 8 Sequences and Series

.. Example 237 Determining convergence of series
Determine the convergence of the following series.

1.
∞∑
n=1

1
n

2.
∞∑
n=1

1
n2

3.
∞∑
n=1

1√
n

4.
∞∑
n=1

(−1)n

n

5.
∞∑

n=10

1
( 12n− 5)3

6.
∞∑
n=1

1
2n

SÊ½çã®ÊÄ

1. This is a p–series with p = 1. By Theorem 61, this series diverges.

This series is a famous series, called the Harmonic Series, so named be-
cause of its relaƟonship to harmonics in the study of music and sound.

2. This is a p–series with p = 2. By Theorem 61, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected

result is that this series converges to
π2

6
.

3. This is a p–series with p = 1/2; the theorem states that it diverges.

4. This is not a p–series; the definiƟon does not allow for alternaƟng signs.
Therefore we cannot apply Theorem 61. (Another famous result states
that this series, the AlternaƟng Harmonic Series, converges to ln 2.)

5. This is a general p–series with p = 3, therefore it converges.

6. This is not a p–series, but a geometric series with r = 2. It converges...

Later secƟons will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

.. Example 238 ..Telescoping series

Evaluate the sum
∞∑
n=1

(
1
n
− 1

n+ 1

)
.

Notes:
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8.2 Infinite Series

SÊ½çã®ÊÄ It will help to write down some of the first few parƟal sums
of this series.

S1 =
1
1
− 1

2
= 1− 1

2

S2 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
= 1− 1

3

S3 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
= 1− 1

4

S4 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
= 1− 1

5

Note how most of the terms in each parƟal sum are canceled out! In general,

we see that Sn = 1 − 1
n+ 1

. The sequence {Sn} converges, as lim
n→∞

Sn =

lim
n→∞

(
1− 1

n+ 1

)
= 1, and so we conclude that

∞∑
n=1

(
1
n
− 1

n+ 1

)
= 1. Par-

Ɵal sums of the series are ploƩed in Figure 8.12. ...

The series in Example 238 is an example of a telescoping series. Informally, a
telescoping series is one in which the parƟal sums reduce to just a finite number
of terms. The parƟal sum Sn did not contain n terms, but rather just two: 1 and
1/(n+ 1).

When possible, seek away towrite an explicit formula for the nth parƟal sum
Sn. This makes evaluaƟng the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

.. Example 239 ..EvaluaƟng series
Evaluate each of the following infinite series.

1.
∞∑
n=1

2
n2 + 2n

2.
∞∑
n=1

ln
(
n+ 1
n

)
SÊ½çã®ÊÄ

1. We can decompose the fracƟon 2/(n2 + 2n) as

2
n2 + 2n

=
1
n
− 1

n+ 2
.

(See SecƟon 6.5, ParƟal FracƟonDecomposiƟon, to recall how this is done,
if necessary.)

Notes:
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Expressing the terms of {Sn} is now more instrucƟve:

S1 = 1−
1
3

= 1−
1
3

S2 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
= 1+

1
2
−

1
3
−

1
4

S3 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
= 1+

1
2
−

1
4
−

1
5

S4 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
= 1+

1
2
−

1
5
−

1
6

S5 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
+

(
1
5
−

1
7

)
= 1+

1
2
−

1
6
−

1
7

We again have a telescoping series. In each parƟal sum, most of the terms

cancel and we obtain the formula Sn = 1 +
1
2
− 1

n+ 1
− 1

n+ 2
. Taking

limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(
1+

1
2
− 1

n+ 1
− 1

n+ 2

)
=

3
2
, so

∞∑
n=1

1
n2 + 2n

=
3
2
.

This is illustrated in Figure 8.13(a).

2. We begin by wriƟng the first few parƟal sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3
2

)
S3 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
S4 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
At first, this does not seem helpful, but recall the logarithmic idenƟty:
ln x+ ln y = ln(xy). Applying this to S4 gives:

S4 = ln (2)+ ln
(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
= ln

(
2
1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We can conclude that {Sn} =
{
ln(n+ 1)

}
. This sequence does not con-

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑
n=1

ln
(
n+ 1
n

)
= ∞; the series di-

verges. Note in Figure 8.13(b) how the sequence of parƟal sums grows

Notes:
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slowly; aŌer 100 terms, it is not yet over 5. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not....

We are learning about a new mathemaƟcal object, the series. As done be-
fore, we apply “old” mathemaƟcs to this new topic.

.

.

.
Theorem 62 ProperƟes of Infinite Series

Let
∞∑
n=1

an = L,
∞∑
n=1

bn = K, and let c be a constant.

1. Constant MulƟple Rule:
∞∑
n=1

c · an = c ·
∞∑
n=1

an = c · L.

2. Sum/Difference Rule:
∞∑
n=1

(
an ± bn

)
=

∞∑
n=1

an ±
∞∑
n=1

bn = L± K.

Before using this theorem, we provide a few “famous” series.

.

.

.
Key Idea 31 Important Series

1.
∞∑
n=0

1
n!

= e. (Note that the index starts with n = 0.)

2.
∞∑
n=1

1
n2

=
π2

6
.

3.
∞∑
n=1

(−1)n+1

n2
=

π2

12
.

4.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑
n=1

1
n

diverges. (This is called the Harmonic Series.)

6.
∞∑
n=1

(−1)n+1

n
= ln 2. (This is called the AlternaƟng Harmonic Series.)

Notes:
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Figure 8.14: ScaƩer plots relaƟng to the
series in Example 240.
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.. Example 240 ..EvaluaƟng series
Evaluate the given series.

1.
∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

2.
∞∑
n=1

1000
n!

3.
1
16

+
1
25

+
1
36

+
1
49

+ · · ·

SÊ½çã®ÊÄ

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

=
∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=
∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 8.14(a).

2. This looks very similar to the series that involves e in Key Idea 31. Note,
however, that the series given in this example starts with n = 1 and not
n = 0. The first term of the series in the Key Idea is 1/0! = 1, so we will
subtract this from our result below:

∞∑
n=1

1000
n!

= 1000 ·
∞∑
n=1

1
n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 8.14(b). The graph shows how this parƟcular
series converges very rapidly.

3. The denominators in each term are perfect squares; we are adding
∞∑
n=4

1
n2

(note we start with n = 4, not n = 1). This series will converge. Using the

Notes:
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formula from Key Idea 31, we have the following:

∞∑
n=1

1
n2

=
3∑

n=1

1
n2

+
∞∑
n=4

1
n2

∞∑
n=1

1
n2

−
3∑

n=1

1
n2

=
∞∑
n=4

1
n2

π2

6
−
(
1
1
+

1
4
+

1
9

)
=

∞∑
n=4

1
n2

π2

6
− 49

36
=

∞∑
n=4

1
n2

0.2838 ≈
∞∑
n=4

1
n2

...

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
secƟon, yet it sƟll may “take some geƫng used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will sƟll diverge if the first term is removed.

(b) The series will sƟll diverge if the first 10 terms are removed.

(c) The series will sƟll diverge if the first 1, 000, 000 terms are removed.

(d) The series will sƟll diverge if any finite number of terms from any-
where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.

Notes:
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.

.

.
Theorem 63 nth–Term Test for Convergence/Divergence

Consider the series
∞∑
n=1

an.

1. If
∞∑
n=1

an converges, then lim
n→∞

an = 0.

2. If lim
n→∞

an ̸= 0, then
∞∑
n=1

an diverges.

Note that the two statements in Theorem 63 are really the same. In order
to converge, the limit of the terms of the sequence must approach 0; if they do
not, the series will not converge.

Looking back, we can apply this theorem to the series in Example 235. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑
n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 31. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic Series,
∞∑
n=1

1/n, diverges.

.

.

.
Theorem 64 Infinite Nature of Series

The convergence or divergence remains unchanged by the addiƟon or
subtracƟon of any finite number of terms. That is:

1. A divergent series will remain divergent with the addiƟon or sub-
tracƟon of any finite number of terms.

2. A convergent series will remain convergent with the addiƟon or
subtracƟon of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑
n=1

1
n
which diverges; that is, the
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8.2 Infinite Series

sequence of parƟal sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of the
first 10million terms of the Harmonic Series is about 16.7. Removing the first 10
million terms from the Harmonic Series changes the nth parƟal sums, effecƟvely
subtracƟng 16.7 from the sum. However, a sequence that is growing without
bound will sƟll grow without bound when 16.7 is subtracted from it.

The equaƟons below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equaƟon shows us subtracƟng these first 10 mil-
lion terms from both sides. The final equaƟon employs a bit of “psuedo–math”:
subtracƟng 16.7 from “infinity” sƟll leaves one with “infinity.”

∞∑
n=1

1
n =

10,000,000∑
n=1

1
n

+

∞∑
n=10,000,001

1
n

∞∑
n=1

1
n −

10,000,000∑
n=1

1
n

=

∞∑
n=10,000,001

1
n

∞ − 16.7 = ∞

Notes:
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Exercises 8.2
Terms and Concepts
1. Use your own words to describe how sequences and series

are related.

2. Use your own words to define a parƟal sum.

3. Given a series
∞∑
n=1

an, describe the two sequences related

to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑
n=1

an is also convergent.

Problems

In Exercises 6 – 13, a series
∞∑
n=1

an is given.

(a) Give the first 5 parƟal sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the
same axes.

6.
∞∑
n=1

(−1)n

n

7.
∞∑
n=1

1
n2

8.
∞∑
n=1

cos(πn)

9.
∞∑
n=1

n

10.
∞∑
n=1

1
n!

11.
∞∑
n=1

1
3n

12.
∞∑
n=1

(
− 9
10

)n

13.
∞∑
n=1

(
1
10

)n

In Exercises 14 – 19, use Theorem 63 to show the given series
diverges.

14.
∞∑
n=1

3n2

n(n+ 2)

15.
∞∑
n=1

2n

n2

16.
∞∑
n=1

n!
10n

17.
∞∑
n=1

5n − n5

5n + n5

18.
∞∑
n=1

2n + 1
2n+1

19.
∞∑
n=1

(
1+

1
n

)n

In Exercises 20 – 29, state whether the given series converges
or diverges.

20.
∞∑
n=1

1
n5

21.
∞∑
n=0

1
5n

22.
∞∑
n=0

6n

5n

23.
∞∑
n=1

n−4

24.
∞∑
n=1

√
n

25.
∞∑
n=1

10
n!

26.
∞∑
n=1

(
1
n!

+
1
n

)

27.
∞∑
n=1

2
(2n+ 8)2

28.
∞∑
n=1

1
2n

29.
∞∑
n=1

1
2n− 1

In Exercises 30 – 44, a series is given.
(a) Find a formula for Sn, the nth parƟal sum of the series.
(b) Determine whether the series converges or diverges.

If it converges, state what it converges to.

30.
∞∑
n=0

1
4n

31. 13 + 23 + 33 + 43 + · · ·

32.
∞∑
n=1

(−1)nn

33.
∞∑
n=0

5
2n
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34.
∞∑
n=1

e−n

35. 1− 1
3
+

1
9
− 1

27
+

1
81

+ · · ·

36.
∞∑
n=1

1
n(n+ 1)

37.
∞∑
n=1

3
n(n+ 2)

38.
∞∑
n=1

1
(2n− 1)(2n+ 1)

39.
∞∑
n=1

ln
(

n
n+ 1

)

40.
∞∑
n=1

2n+ 1
n2(n+ 1)2

41.
1

1 · 4 +
1

2 · 5 +
1

3 · 6 +
1

4 · 7 + · · ·

42. 2+
(
1
2
+

1
3

)
+

(
1
4
+

1
9

)
+

(
1
8
+

1
27

)
+ · · ·

43.
∞∑
n=2

1
n2 − 1

44.
∞∑
n=0

(
sin 1

)n
45. Break theHarmonic Series into the sumof the odd and even

terms:
∞∑
n=1

1
n
=

∞∑
n=1

1
2n− 1

+

∞∑
n=1

1
2n

.

The goal is to show that each of the series on the right di-
verge.

(a) Show why
∞∑
n=1

1
2n− 1

>

∞∑
n=1

1
2n

.

(Compare each nth parƟal sum.)

(b) Show why
∞∑
n=1

1
2n− 1

< 1+
∞∑
n=1

1
2n

(c) Explain why (a) and (b) demonstrate that the series
of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both
converge or both diverge.)

(d) Explain why knowing the Harmonic Series is diver-
gent determines that the even and odd series are also
divergent.

46. Show the series
∞∑
n=1

n
(2n− 1)(2n+ 1)

diverges.
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Note: Theorem 65 does not state that
the integral and the summaƟon have the
same value.
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Figure 8.15: IllustraƟng the truth of the
Integral Test.

Chapter 8 Sequences and Series

8.3 Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in SecƟon 8.6. Theorems 60 and 61 give criteria for
when Geometric and p- series converge, and Theorem 63 gives a quick test to
determine if a series diverges. There are many important series whose conver-
gence cannot be determined by these theorems, though, so we introduce a set
of tests that allow us to handle a broad range of series. We start with the Inte-
gral Test.

Integral Test

We stated in SecƟon 8.1 that a sequence {an} is a funcƟon a(n) whose do-
main isN, the set of natural numbers. If we can extend a(n) toR, the real num-
bers, and it is both posiƟve and decreasing on [1,∞), then the convergence of
∞∑
n=1

an is the same as
∫ ∞

1
a(x) dx.

.

.

.
Theorem 65 Integral Test

Let a sequence {an} be defined by an = a(n), where a(n) is conƟnuous,

posiƟve and decreasing on [1,∞). Then
∞∑
n=1

an converges, if, and only if,∫ ∞

1
a(x) dx converges.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 8.15(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1
a(x) dx <

∞∑
n=1

an. (8.1)

In Figure 8.15(b), we draw rectangles under y = a(x) with the Right-Hand rule,
starƟng with n = 2. This Ɵme, the area of the rectangles is less than the area

under y = a(x), so
∞∑
n=2

an <

∫ ∞

1
a(x) dx. Note how this summaƟon starts

with n = 2; adding a1 to both sides lets us rewrite the summaƟon starƟng with

Notes:
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Figure 8.16: Ploƫng the sequence and
series in Example 241.

8.3 Integral and Comparison Tests

n = 1:
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx. (8.2)

Combining EquaƟons (8.1) and (8.2), we have
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx < a1 +

∞∑
n=1

an. (8.3)

From EquaƟon (8.3) we can make the following two statements:

1. If
∞∑
n=1

an diverges, so does
∫ ∞

1
a(x)dx (because

∞∑
n=1

an < a1+
∫ ∞

1
a(x)dx)

2. If
∞∑
n=1

an converges, so does
∫ ∞

1
a(x)dx (because

∫ ∞

1
a(x)dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. Theorem
64 allows us to extend this theorem to series where an is posiƟve and decreasing
on [b,∞) for some b > 1.

.. Example 241 ..Using the Integral Test

Determine the convergence of
∞∑
n=1

ln n
n2

. (The terms of the sequence {an} =

{ln n/n2} and the nth parƟal sums are given in Figure 8.16.)

SÊ½çã®ÊÄ Applying the Integral Test, we test the convergenceof
∫ ∞

1

ln x
x2

dx.

IntegraƟng this improper integral requires the use of IntegraƟon by Parts, with
u = ln x and dv = 1/x2 dx.∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

−1
x
ln x
∣∣∣b
1
+

∫ b

1

1
x2

dx

= lim
b→∞

−1
x
ln x− 1

x

∣∣∣b
1

= lim
b→∞

1− 1
b
− ln b

b
. Apply L’Hôpital’s Rule:

= 1.

Since
∫ ∞

1

ln x
x2

dx converges, so does
∞∑
n=1

ln n
n2

.

Notes:
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Chapter 8 Sequences and Series

Note how the sequence {an} is not strictly decreasing; it increases from
n = 1 to n = 2. However, this does not keep us from applying the Integral
Test as the sequence in posiƟve and decreasing on [2,∞). ...

Theorem 61 was given without jusƟficaƟon, staƟng that the general p-series
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. In the following example, we

prove this to be true by applying the Integral Test.

.. Example 242 Using the Integral Test to establish Theorem 61.

Use the Integral Test to prove that
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.

SÊ½çã®ÊÄ Consider the integral
∫ ∞

1

1
(ax+ b)p

dx; assuming p ̸= 1,

∫ ∞

1

1
(ax+ b)p

dx = lim
c→∞

∫ c

1

1
(ax+ b)p

dx

= lim
c→∞

1
a(1− p)

(ax+ b)1−p
∣∣∣c
1

= lim
c→∞

1
a(1− p)

(
(ac+ b)1−p − (a+ b)1−p).

This limit converges if, and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 21.)

Therefore
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. ..

We consider two more convergence tests in this secƟon, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

Notes:
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Note: A sequence {an} is a posiƟve
sequence if an > 0 for all n.

Because of Theorem64, any theorem that
relies on a posiƟve sequence sƟll holds
true when an > 0 for all but a finite num-
ber of values of n.

8.3 Integral and Comparison Tests

Direct Comparison Test

.

.

.
Theorem 66 Direct Comparison Test

Let {an} and {bn} be posiƟve sequences where an ≤ bn for all n ≥ N,
for some N ≥ 1.

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

.. Example 243 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
3n + n2

.

SÊ½çã®ÊÄ This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since 3n < 3n + n2,
1
3n

>
1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1
3n

is a

convergent geometric series; by Theorem 66,
∞∑
n=1

1
3n + n2

converges. ..

.. Example 244 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
n− ln n

.

SÊ½çã®ÊÄ We know the Harmonic Series
∞∑
n=1

1
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.

Since n ≥ n− ln n for all n ≥ 1,
1
n
≤ 1

n− ln n
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑
n=1

1
n− ln n

diverges as

well. ..

Notes:
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Chapter 8 Sequences and Series

The concept of direct comparison is powerful and oŌen relaƟvely easy to
apply. PracƟce helps one develop the necessary intuiƟon to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑
n=1

1
n+ ln n

. It is very similar to the divergent series given in Ex-

ample 244. We suspect that it also diverges, as
1
n
≈ 1

n+ ln n
for large n. How-

ever, the inequality that we naturally want to use “goes the wrong way”: since

n ≤ n+ ln n for all n ≥ 1,
1
n
≥ 1

n+ ln n
for all n ≥ 1. The given series has terms

less than the terms of a divergent series, and we cannot conclude anything from
this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

.

.

.
Theorem 67 Limit Comparison Test

Let {an} and {bn} be posiƟve sequences.

1. If lim
n→∞

an
bn

= L, where L is a posiƟve real number, then
∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

It is helpful to remember that when using Theorem 67, the terms of the
series with known convergence go in the denominator of the fracƟon.

We use the Limit Comparison Test in the next example to examine the series
∞∑
n=1

1
n+ ln n

which moƟvated this new test.

Notes:
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8.3 Integral and Comparison Tests

.. Example 245 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
n+ ln n

using the Limit Comparison Test.

SÊ½çã®ÊÄ We compare the terms of
∞∑
n=1

1
n+ ln n

to the terms of the

Harmonic Sequence
∞∑
n=1

1
n
:

lim
n→∞

1/(n+ ln n)
1/n

= lim
n→∞

n
n+ ln n

= 1 (aŌer applying L’Hôpital’s Rule).

Since the Harmonic Series diverges, we conclude that
∞∑
n=1

1
n+ ln n

diverges as

well. ..

.. Example 246 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
3n − n2

SÊ½çã®ÊÄ This series is similar to the one in Example 243, but now we
are considering “3n − n2” instead of “3n + n2.” This difference makes applying
the Direct Comparison Test difficult.

Instead, weuse the Limit Comparison Test and comparewith the series
∞∑
n=1

1
3n

:

lim
n→∞

1/(3n − n2)
1/3n

= lim
n→∞

3n

3n − n2

= 1 (aŌer applying L’Hôpital’s Rule twice).

We know
∞∑
n=1

1
3n

is a convergent geometric series, hence
∞∑
n=1

1
3n − n2

converges

as well. ..

As menƟoned before, pracƟce helps one develop the intuiƟon to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponenƟals, which dominate algebraic func-
Ɵons (e.g., polynomials), which dominate logarithms. In the previous example,

Notes:
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Chapter 8 Sequences and Series

the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1
3n

. It is

hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hôpital’s Rule to n!.

.. Example 247 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

√
x+ 3

x2 − x+ 1
.

SÊ½çã®ÊÄ We naïvely aƩempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/x2. Knowing

that
∞∑
n=1

1
n2

converges, we aƩempt to apply the Limit Comparison Test:

lim
n→∞

(
√
x+ 3)/(x2 − x+ 1)

1/x2
= lim

n→∞

x2(
√
x+ 3)

x2 − x+ 1
= ∞ (Apply L’Hôpital’s Rule).

Theorem 67 part (3) only applies when
∞∑
n=1

bn diverges; in our case, it con-

verges. UlƟmately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
funcƟons, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is x1/2 and the dominant term of the
denominator is x2. Thus we should compare the terms of the given series to
x1/2/x2 = 1/x3/2:

lim
n→∞

(
√
x+ 3)/(x2 − x+ 1)

1/x3/2
= lim

n→∞

x3/2(
√
x+ 3)

x2 − x+ 1
= 1 (Applying L’Hôpital’s Rule).

Since the p-series
∞∑
n=1

1
x3/2

converges, we conclude that
∞∑
n=1

√
x+ 3

x2 − x+ 1
con-

verges as well. ..

Notes:
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Exercises 8.3
Terms and Concepts
1. In order to apply the Integral Test to a sequence {an}, the

funcƟon a(n) = an must be , and .

2. T/F: The Integral Test can be used to determine the sum of
a convergent series.

3. What test(s) in this secƟon do not work well with factori-
als?

4. Suppose
∞∑
n=0

an is convergent, and there are sequences

{bn} and {cn} such that bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

Problems
In Exercises 5 – 12, use the Integral Test to determine the con-
vergence of the given series.

5.
∞∑
n=1

1
2n

6.
∞∑
n=1

1
n4

7.
∞∑
n=1

n
n2 + 1

8.
∞∑
n=2

1
n ln n

9.
∞∑
n=1

1
n2 + 1

10.
∞∑
n=2

1
n(ln n)2

11.
∞∑
n=1

n
2n

12.
∞∑
n=1

ln n
n3

In Exercises 13 – 22, use the Direct Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

13.
∞∑
n=1

1
n2 + 3n− 5

14.
∞∑
n=1

1
4n + n2 − n

15.
∞∑
n=1

ln n
n

16.
∞∑
n=1

1
n! + n

17.
∞∑
n=2

1√
n2 − 1

18.
∞∑
n=5

1√
n− 2

19.
∞∑
n=1

n2 + n+ 1
n3 − 5

20.
∞∑
n=1

2n

5n + 10

21.
∞∑
n=2

n
n2 − 1

22.
∞∑
n=2

1
n2 ln n

In Exercises 23 – 32, use the Limit Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

23.
∞∑
n=1

1
n2 − 3n+ 5

24.
∞∑
n=1

1
4n − n2

25.
∞∑
n=4

ln n
n− 3

26.
∞∑
n=1

1√
n2 + n

27.
∞∑
n=1

1
n+

√
n

28.
∞∑
n=1

n− 10
n2 + 10n+ 10

29.
∞∑
n=1

sin
(
1/n
)

30.
∞∑
n=1

n+ 5
n3 − 5

31.
∞∑
n=1

√
n+ 3

n2 + 17

32.
∞∑
n=1

1√
n+ 100
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In Exercises 33 – 40, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

33.
∞∑
n=1

n2

2n

34.
∞∑
n=1

1
(2n+ 5)3

35.
∞∑
n=1

n!
10n

36.
∞∑
n=1

ln n
n!

37.
∞∑
n=1

1
3n + n

38.
∞∑
n=1

n− 2
10n+ 5

39.
∞∑
n=1

3n

n3

40.
∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑
n=1

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞∑
n=1

an
n

(b)
∞∑
n=1

anan+1

(c)
∞∑
n=1

(an)2

(d)
∞∑
n=1

nan

(e)
∞∑
n=1

1
an
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Note: Theorem 64 allows us to apply the
RaƟo Test to series where {an} is posiƟve
for all but a finite number of terms.

8.4 RaƟo and Root Tests

8.4 RaƟo and Root Tests

The nth–Term Test of Theorem 63 states that in order for a series
∞∑
n=1

an to con-

verge, lim
n→∞

an = 0. That is, the terms of {an}must get very small. Not onlymust
the terms approach 0, theymust approach 0 “fast enough”: while lim

n→∞
1/n = 0,

the Harmonic Series
∞∑
n=1

1
n
diverges as the terms of {1/n} do not approach 0

“fast enough.”
The comparison tests of the previous secƟondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This secƟon introduces the RaƟo and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

RaƟo Test

.

.

.
Theorem 68 RaƟo Test

Let {an} be a posiƟve sequence where lim
n→∞

an+1

an
= L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the RaƟo Test is inconclusive.

The principle of the RaƟo Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous term which is enough
to ensure convergence.

.. Example 248 ..Applying the RaƟo Test
Use the RaƟo Test to determine the convergence of the following series:

1.
∞∑
n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1
n2 + 1

.
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SÊ½çã®ÊÄ

1.
∞∑
n=1

2n

n!
:

lim
n→∞

2n+1/(n+ 1)!
2n/n!

= lim
n→∞

2n+1n!
2n(n+ 1)!

= lim
n→∞

2
n+ 1

= 0.

Since the limit is 0 < 1, by the RaƟo Test
∞∑
n=1

2n

n!
converges.

2.
∞∑
n=1

3n

n3
:

lim
n→∞

3n+1/(n+ 1)3

3n/n3
= lim

n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the RaƟo Test
∞∑
n=1

3n

n3
diverges.

3.
∞∑
n=1

1
n2 + 1

:

lim
n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1
(n+ 1)2 + 1

= 1.

Since the limit is 1, the RaƟo Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑
n=1

1
n2

.

...
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8.4 RaƟo and Root Tests

The RaƟo Test is not effecƟve when the terms of a series only contain al-
gebraic funcƟons (e.g., polynomials). It is most effecƟve when the terms con-
tain some factorials or exponenƟals. The previous example also reinforces our
developing intuiƟon: factorials dominate exponenƟals, which dominate alge-
braic funcƟons, which dominate logarithmic funcƟons. In Part 1 of the example,
the factorial in the denominator dominated the exponenƟal in the numerator,
causing the series to converge. In Part 2, the exponenƟal in the numerator dom-
inated the algebraic funcƟon in the denominator, causing the series to diverge.

While we have used factorials in previous secƟons, we have not explored
them closely and one is likely to not yet have a strong intuiƟve sense for how
they behave. The following example gives more pracƟce with factorials.

.. Example 249 Applying the RaƟo Test

Determine the convergence of
∞∑
n=1

n!n!
(2n)!

.

SÊ½çã®ÊÄ Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the laƩer is 2(4 · 3 · 2 · 1) = 48.

Applying the RaƟo Test:

lim
n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!
= lim

n→∞

(n+ 1)!(n+ 1)!(2n)!
n!n!(2n+ 2)!

NoƟng that (2n+ 2)! = (2n+ 2) · (2n+ 1) · (2n)!, we have

= lim
n→∞

(n+ 1)(n+ 1)
(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the RaƟo Test we conclude
∞∑
n=1

n!n!
(2n)!

converges. ..

Root Test

The final test we introduce is the Root Test, which works parƟcularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Notes:
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Note: Theorem 64 allows us to apply the
Root Test to series where {an} is posiƟve
for all but a finite number of terms.

Chapter 8 Sequences and Series

.

.

.
Theorem 69 Root Test

Let {an} be a posiƟve sequence, and let lim
n→∞

(an)1/n = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Root Test is inconclusive.

.. Example 250 Applying the Root Test
Determine the convergence of the following series using the Root Test:

1.
∞∑
n=1

(
3n+ 1
5n− 2

)n

2.
∞∑
n=1

n4

(ln n)n
3.

∞∑
n=1

2n

n2
.

SÊ½çã®ÊÄ

1. lim
n→∞

((
3n+ 1
5n− 2

)n)1/n

= lim
n→∞

3n+ 1
5n− 2

=
3
5
.

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the RaƟo Test to this series.

2. lim
n→∞

(
n4

(ln n)n

)1/n

= lim
n→∞

(
n1/n

)4
ln n

.

As n grows, the numerator approaches 1 (apply L’Hôpital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
n1/n

)4
ln n

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n

= lim
n→∞

2(
n1/n

)2 = 2.

Since this is greater than 2, we conclude the series diverges...

Notes:
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Exercises 8.4
Terms and Concepts
1. The RaƟo Test is not effecƟvewhen the terms of a sequence

only contain funcƟons.

2. The RaƟo Test is most effecƟve when the terms of a se-
quence contains and/or funcƟons.

3. What three convergence tests do not work well with terms
containing factorials?

4. The Root Test works parƟcularly well on series where each
term is to a .

Problems
In Exercises 5 – 14, determine the convergence of the given
series using the RaƟo Test. If the RaƟo Test is inconclusive,
state so and determine convergence with another test.

5.
∞∑
n=0

2n
n!

6.
∞∑
n=0

5n − 3n
4n

7.
∞∑
n=0

n!10n

(2n)!

8.
∞∑
n=1

5n + n4

7n + n2

9.
∞∑
n=1

1
n

10.
∞∑
n=1

1
3n3 + 7

11.
∞∑
n=1

10 · 5n

7n − 3

12.
∞∑
n=1

n ·
(
3
5

)n

13.
∞∑
n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑
n=1

n!
5 · 10 · 15 · · · (5n)

In Exercises 15 – 24, determine the convergence of the given
series using the Root Test. If the Root Test is inconclusive,
state so and determine convergence with another test.

15.
∞∑
n=1

(
2n+ 5
3n+ 11

)n

16.
∞∑
n=1

(
.9n2 − n− 3
n2 + n+ 3

)n

17.
∞∑
n=1

2nn2

3n

18.
∞∑
n=1

1
nn

19.
∞∑
n=1

3n

n22n+1

20.
∞∑
n=1

4n+7

7n

21.
∞∑
n=1

(
n2 − n
n2 + n

)n

22.
∞∑
n=1

(
1
n
− 1

n2

)n

23.
∞∑
n=1

1(
ln n
)n

24.
∞∑
n=1

n2(
ln n
)n

In Exercises 25 – 34, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

25.
∞∑
n=1

n2 + 4n− 2
n3 + 4n2 − 3n+ 7

26.
∞∑
n=1

n44n

n!

27.
∞∑
n=1

n2

3n + n

28.
∞∑
n=1

3n

nn

29.
∞∑
n=1

n√
n2 + 4n+ 1

30.
∞∑
n=1

n!n!n!
(3n)!

31.
∞∑
n=1

1
ln n

32.
∞∑
n=1

(
n+ 2
n+ 1

)n

33.
∞∑
n=1

n3(
ln n
)n

34.
∞∑
n=1

(
1
n
− 1

n+ 2

)
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Chapter 8 Sequences and Series

8.5 AlternaƟng Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {an} be a posiƟve sequence. (We can relax this with Theorem 64 and
state that there must be an N > 0 such that an > 0 for all n > N; that is, {an} is
posiƟve for all but a finite number of values of n.)

In this secƟon we explore series whose summaƟon includes negaƟve terms.
We start with a very specific form of series, where the terms of the summaƟon
alternate between being posiƟve and negaƟve.

.

.

.
DefiniƟon 34 AlternaƟng Series

Let {an} be a posiƟve sequence. An alternaƟng series is a series of either
the form

∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{1/n}. An important alternaƟng series is the AlternaƟng Harmonic Series:

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

Geometric Series can also be alternaƟng series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1
2

)n

= 1− 1
2
+

1
4
− 1

8
+

1
16

− 1
32

+ · · ·

Theorem 60 states that geometric series converge when |r| < 1 and gives

the sum:
∞∑
n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

1
3/2

=
2
3
.

Apowerful convergence theoremexists for other alternaƟng series thatmeet
a few condiƟons.

Notes:
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Figure 8.17: IllustraƟng convergence with
the AlternaƟng Series Test.

8.5 AlternaƟng Series and Absolute Convergence

.

.

.
Theorem 70 AlternaƟng Series Test

Let {an} be a posiƟve, decreasing sequence where lim
n→∞

an = 0. Then

∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an

converge.

The basic idea behind Theorem 70 is illustrated in Figure 8.17. A posiƟve,
decreasing sequence {an} is shown along with the parƟal sums

Sn =
n∑

i=1

(−1)i+1ai = a1 − a2 + a3 − a4 + · · ·+ (−1)nan.

Because{an} is decreasing, the amount bywhich Sn bounces up/downdecreases.
Moreover, the odd terms of Sn form a decreasing, bounded sequence, while the
even terms of Sn form an increasing, bounded sequence. Since bounded, mono-
tonic sequences converge (see Theorem 59) and the terms of {an} approach 0,
one can show the odd and even terms of Sn converge to the same common limit
L, the sum of the series.

.. Example 251 ..Applying the AlternaƟng Series Test
Determine if the AlternaƟng Series Test applies to each of the following series.

1.
∞∑
n=1

(−1)n+1 1
n

2.
∞∑
n=1

(−1)n
ln n
n

3.
∞∑
n=1

(−1)n+1 | sin n|
n2

SÊ½çã®ÊÄ

1. This is the AlternaƟng Harmonic Series as seen previously. The underlying
sequence is {an} = {1/n}, which is posiƟve, decreasing, and approaches
0 as n → ∞. Therefore we can apply the AlternaƟng Series Test and
conclude this series converges.
While the test does not state what the series converges to, we will see

later that
∞∑
n=1

(−1)n+1 1
n
= ln 2.

2. The underlying sequence is {an} = {ln n/n}. This is posiƟve and ap-
proaches 0 as n → ∞ (use L’Hôpital’s Rule). However, the sequence is not
decreasing for all n. It is straighƞorward to compute a1 = 0, a2 ≈ 0.347,

Notes:
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Chapter 8 Sequences and Series

a3 ≈ 0.366, and a4 ≈ 0.347: the sequence is increasing for at least the
first 3 terms.

We do not immediately conclude that we cannot apply the AlternaƟng
Series Test. Rather, consider the long–term behavior of {an}. TreaƟng
an = a(n) as a conƟnuous funcƟon of n defined on (1,∞), we can take
its derivaƟve:

a′(n) =
1− ln n

n2
.

The derivaƟve is negaƟve for all n ≥ 3 (actually, for all n > e), mean-
ing a(n) = an is decreasing on (3,∞). We can apply the AlternaƟng
Series Test to the series when we start with n = 3 and conclude that
∞∑
n=3

(−1)n
ln n
n

converges; adding the terms with n = 1 and n = 2 do not

change the convergence (i.e., we apply Theorem 64).

The important lesson here is that as before, if a series fails to meet the
criteria of the AlternaƟng Series Test on only a finite number of terms, we
can sƟll apply the test.

3. The underlying sequence is {an} = | sin n|/n. This sequence is posiƟve
and approaches 0 as n → ∞. However, it is not a decreasing sequence;
the value of | sin n| oscillates between 0 and 1 as n → ∞. We cannot
remove a finite number of terms to make {an} decreasing, therefore we
cannot apply the AlternaƟng Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 70....

Key Idea 31 gives the sum of some important series. Two of these are

∞∑
n=1

1
n2

=
π2

6
≈ 1.64493 and

∞∑
n=1

(−1)n+1

n2
=

π2

12
≈ 0.82247.

These two series converge to their sums at different rates. To be accurate to
two places aŌer the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternaƟng structure of an alternaƟng series gives us a powerful tool when
approximaƟng the sum of a convergent series.

Notes:
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8.5 AlternaƟng Series and Absolute Convergence

.

.

.
Theorem 71 The AlternaƟng Series ApproximaƟon Theorem

Let {an} be a sequence that saƟsfies the hypotheses of the AlternaƟng
Series Test, and let Sn and L be the nth parƟal sums and sum, respecƟvely,

of either
∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an. Then

1. |Sn − L| < an+1, and

2. L is between Sn and Sn+1.

Part 1 of Theorem 71 states that the nth parƟal sum of a convergent alternat-
ing series will be within an+1 of its total sum. Consider the alternaƟng series

we looked at before the statement of the theorem,
∞∑
n=1

(−1)n+1

n2
. Since a14 =

1/142 ≈ 0.0051, we know that S13 is within 0.0051 of the total sum. That is, we
know S13 is accurate to at least 1 place aŌer the decimal. (The “5” in the third
place aŌer the decimal could cause a carry meaning S13 isn’t accurate to two
places aŌer the decimal; in this parƟcular case, that doesn’t happen.)

Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈
0.8201, we know the sum L lies between 0.8201 and 0.8252, assuring us that
S13 is indeed accurate to two decimal places.

Some alternaƟng series converge slowly. In Example 251 we determined the

series
∞∑
n=1

(−1)n+1 ln n
n

converged. With n = 1001, we find ln n/n ≈ 0.0069,

meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places aŌer the
decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤ 0.1633.

.. Example 252 ..ApproximaƟng the sum of convergent alternaƟng series
Approximate the sum of the following series, accurate to two places aŌer the
decimal.

1.
∞∑
n=1

(−1)n+1 1
n3

2.
∞∑
n=1

(−1)n+1 ln n
n

.

SÊ½çã®ÊÄ

1. To be ensure accuracy to two places aŌer the decimal, we need an <

Notes:
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0.0001:

1
n3

< 0.0001

n3 > 10, 000

n >
3
√
10000 ≈ 21.5.

With n = 22, we are assured accuracy to two places aŌer the decimal.
With S21 ≈ 0.9015, we are confident that the sum L of the series is about
0.90.

We can arrive at this approximaƟon another way. Part 2 of Theorem 71
states that the sum L lies between successive parƟal sums. It is straight-
forward to compute S6 ≈ 0.899782, S7 ≈ 0.9027 and S8 ≈ 0.9007. We
know the sum must lie between these last two parƟal sums; since they
agree to two places aŌer the decimal, we know L ≈ 0.90.

2. We again solve for n such that an < 0.0001; that is, we want n such that
ln(n)/n < 0.0001. This cannot be solved algebraically, so we approximate
the soluƟon using Newton’s Method.

Let f(x) = ln(x)/x − 0.0001. We want to find where f(x) = 0. Assum-
ing that x must be large, we let x1 = 1000. Recall that xn+1 = xn −
f(xn)/f ′(xn); we compute f ′(x) =

(
1− ln(x)

)
/x2. Thus:

x2 = 1000− ln(1000)/1000− 0.0001(
1− ln(1000)

)
/10002

= 2152.34.

Using a computer, we find that aŌer 12 iteraƟons we find x ≈ 116, 671.
With S116,671 ≈ 0.1598 and S116,672 ≈ 0.1599, we know that the sum L is
between these two values. Simply staƟng that L ≈ 0.15 is misleading, as
L is very, very close to 0.16.

...

One of the famous results of mathemaƟcs is that the Harmonic Series,
∞∑
n=1

1
n

diverges, yet the AlternaƟng Harmonic Series,
∞∑
n=1

(−1)n+1 1
n
, converges. The

noƟon that alternaƟng the signs of the terms in a series can make a series con-
verge leads us to the following definiƟons.
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Note: In DefiniƟon 35,
∞∑
n=1

an is not nec-

essarily an alternaƟng series; it just may
have some negaƟve terms.

8.5 AlternaƟng Series and Absolute Convergence

.

.

.
DefiniƟon 35 Absolute and CondiƟonal Convergence

1. A series
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| converges.

2. A series
∞∑
n=1

an converges condiƟonally if
∞∑
n=1

an converges but

∞∑
n=1

|an| diverges.

Thus we say the AlternaƟng Harmonic Series converges condiƟonally.

.. Example 253 ..Determining absolute and condiƟonal convergence.
Determine if the following series converges absolutely, condiƟonally, or diverges.

1.
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
2.

∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
3.

∞∑
n=3

(−1)n
3n− 3
5n− 10

SÊ½çã®ÊÄ

1. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3
n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the AlternaƟng Series

Test; we conclude it converges condiƟonally.

2. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n2 + 2n+ 5

2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5
2n

converges using the RaƟo Test.

Therefore we conclude
∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
converges absolutely.

Notes:
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3. The series

∞∑
n=3

∣∣∣∣(−1)n
3n− 3
5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3
5n− 10

diverges using the nth Term Test, so it does not converge absolutely.

The series
∞∑
n=3

(−1)n
3n− 3
5n− 10

fails the condiƟons of the AlternaƟng Series

Test as (3n− 3)/(5n− 10) does not approach 0 as n → ∞. We can state
further that this series diverges; as n → ∞, the series effecƟvely adds and
subtracts 3/5 over and over. This causes the sequence of parƟal sums to
oscillate and not converge.

Therefore the series
∞∑
n=1

(−1)n
3n− 3
5n− 10

diverges.
...

Knowing that a series converges absolutely allows us to make two impor-
tant statements, given in the following theorem. The first is that absolute con-

vergence is “stronger” than regular convergence. That is, just because
∞∑
n=1

an

converges, we cannot conclude that
∞∑
n=1

|an|will converge, but knowing a series

converges absolutely tells us that
∞∑
n=1

an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be posiƟve. By taking the absolute value of the
terms of a series where not all terms are posiƟve, we are oŌen able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecƟng
the sum.

Notes:
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8.5 AlternaƟng Series and Absolute Convergence
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.

.
Theorem 72 Absolute Convergence Theorem

Let
∞∑
n=1

an be a series that converges absolutely.

1.
∞∑
n=1

an converges.

2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =
∞∑
n=1

an.

In Example 253, we determined the series in part 2 converges absolutely.
Theorem 72 tells us the series converges (which we could also determine using
the AlternaƟng Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condiƟon-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named aŌer Bernhard Riemann)
states that any condiƟonally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the AlternaƟng Harmonic Series once more. We
have stated that

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
· · · = ln 2,

(see Key Idea 31 or Example 251).
Consider the rearrangement where every posiƟve term is followed by two

negaƟve terms:

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
AlternaƟng Harmonic Series, just in a different order.) Now group some terms

Notes:
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and simplify:(
1− 1

2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ · · · =

1
2
− 1

4
+

1
6
− 1

8
+

1
10

− 1
12

+ · · · =

1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

1
2
ln 2.

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the AlternaƟng Harmonic Series does not actually
converge to ln 2, because rearranging the terms of the series shouldn’t change
the sum. However, the AlternaƟng Series Test proves this series converges to
L, for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the AlternaƟng Series ApproximaƟon Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The back cover
of this text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ulƟmate goal
within calculus is the study of Power Series, which we will consider in the next
secƟon. We will use power series to create funcƟons where the output is the
result of an infinite summaƟon.
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Exercises 8.5
Terms and Concepts

1. Why is
∞∑
n=1

sin n not an alternaƟng series?

2. A series
∞∑
n=1

(−1)nan converges when {an} is ,

and lim
n→∞

an = .

3. Give an example of a series where
∞∑
n=0

an converges but

∞∑
n=0

|an| does not.

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

In Exercises 5 – 20, an alternaƟng series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑
n=0

|an| converges or diverges.

(c) If
∞∑
n=0

an converges, determine if the convergence is

condiƟonal or absolute.

5.
∞∑
n=1

(−1)n+1

n2

6.
∞∑
n=1

(−1)n+1
√
n!

7.
∞∑
n=0

(−1)n
n+ 5
3n− 5

8.
∞∑
n=1

(−1)n
2n

n2

9.
∞∑
n=0

(−1)n+1 3n+ 5
n2 − 3n+ 1

10.
∞∑
n=1

(−1)n

ln n+ 1

11.
∞∑
n=2

(−1)n
n
ln n

12.
∞∑
n=1

(−1)n+1

1+ 3+ 5+ · · ·+ (2n− 1)

13.
∞∑
n=1

cos
(
πn
)

14.
∞∑
n=1

sin
(
(n+ 1/2)π

)
n ln n

15.
∞∑
n=0

(
−2
3

)n

16.
∞∑
n=0

(−e)−n

17.
∞∑
n=0

(−1)nn2

n!

18.
∞∑
n=0

(−1)n2−n2

19.
∞∑
n=1

(−1)n√
n

20.
∞∑
n=1

(−1000)n

n!

Let Sn be the nth parƟal sum of a series. In Exercises 21 – 24, a
convergent alternaƟng series is given and a value of n. Com-
pute Sn and Sn+1 and use these values to find bounds on the
sum of the series.

21.
∞∑
n=1

(−1)n

ln(n+ 1)
, n = 5

22.
∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑
n=0

(−1)n

n!
, n = 6

24.
∞∑
n=0

(
−1
2

)n

, n = 9

In Exercises 25 – 28, a convergent alternaƟng series is given
along with its sum and a value of ε. Use Theorem 71 to find
n such that the nth parƟal sum of the series is within ε of the
sum of the series.

25.
∞∑
n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001

26.
∞∑
n=0

(−1)n

n!
=

1
e
, ε = 0.0001

27.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001

28.
∞∑
n=0

(−1)n

(2n)!
= cos 1, ε = 10−8
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8.6 Power Series

So far, our study of series has examined the quesƟon of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspecƟve: as a funcƟon. Given a value of x, we evaluate f(x)
by finding the sum of a parƟcular series that depends on x (assuming the series
converges). We start this new approach to series with a definiƟon.

.

.

.
DefiniƟon 36 Power Series

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + . . .

2. The power series in x centered at c is the series

∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + . . .

.. Example 254 ..Examples of power series
Write out the first five terms of the following power series:

1.
∞∑
n=0

xn 2.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
3.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
.

SÊ½çã®ÊÄ

1. One of the convenƟons we adopt is that x0 = 1 regardless of the value of
x. Therefore

∞∑
n=0

xn = 1+ x+ x2 + x3 + x4 + . . .

This is a geometric series in x.

2. This series is centered at c = −1. Note how this series starts with n = 1.
We could rewrite this series starƟng at n = 0 with the understanding that

Notes:
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8.6 Power Series

a0 = 0, and hence the first term is 0.

∞∑
n=1

(−1)n+1 (x+ 1)n

n
= (x+1)− (x+ 1)2

2
+
(x+ 1)3

3
− (x+ 1)4

4
+
(x+ 1)5

5
. . .

3. This series is centered at c = π. Recall that 0! = 1.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
= −1+

(x− π)2

2
− (x− π)4

24
+
(x− π)6

6!
− (x− π)8

8!
. . .

...

We introduced power series as a type of funcƟon, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 254, we recognized the series
∞∑
n=0

xn as a geometric

series in x. Theorem 60 states that this series converges only when |x| < 1.

This raises the quesƟon: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and definiƟon.

.

.

.
Theorem 73 Convergence of Power Series

Let a power series
∞∑
n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definiƟon. Also, note that part 2 of Theorem 73
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Notes:
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.

.

.
DefiniƟon 37 Radius and Interval of Convergence

1. The number R given in Theorem 73 is the radius of convergence of
a given series. When a series converges for only x = c, we say the
radius of convergence is 0, i.e., R = 0. When a series converges
for all x, we say the series has an infinite radius of convergence,
i.e., R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con-
vergence tests we studied previously (especially the RaƟo Test). However, the
tests all required that the terms of a series be posiƟve. The following theorem
gives us a work–around to this problem.

.

.

.
Theorem 74 The Radius of Convergence of a Series and Absolute
Convergence

The series
∞∑
n=0

an(x − c)n and
∞∑
n=0

∣∣an(x − c)n
∣∣ have the same radius of

convergence R.

Theorem 74 allows us to find the radius of convergence R of a series by ap-
plying the RaƟo Test (or any applicable test) to the absolute value of the terms
of the series. We pracƟce this in the following example.

.. Example 255 ..Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

1.
∞∑
n=0

xn

n!
2.

∞∑
n=1

(−1)n+1 xn

n
3.

∞∑
n=0

2n(x− 3)n 4.
∞∑
n=0

n!xn

SÊ½çã®ÊÄ
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1. We apply the RaƟo Test to the series
∞∑
n=0

∣∣∣∣xnn!
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)!
∣∣∣∣xn/n!∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n!
(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x
n+ 1

∣∣∣∣
= 0 for all x.

The RaƟo Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = ∞, and the interval of
convergence is (−∞,∞).

2. We apply the RaƟo Test to the series
∞∑
n=1

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣xnn
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)
∣∣∣∣xn/n∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n
n+ 1

∣∣∣∣
= lim

n→∞
|x| n

n+ 1
= |x|.

The RaƟo Test states a series converges if the limit of |an+1/an| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (−1, 1). Thus the radius of convergence is
R = 1. ..

To determine the interval of convergence, we need to check the endpoints
of (−1, 1). When x = −1, we have the series

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1
n

= −∞.

The series diverges when x = −1.

When x = 1, we have the series
∞∑
n=1

(−1)n+1 (1)n

n
, which is the AlternaƟng

Harmonic Series, which converges. Therefore the interval of convergence
is (−1, 1].

Notes:
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3. We apply the RaƟo Test to the series
∞∑
n=0

∣∣2n(x− 3)n
∣∣:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣∣∣2n(x− 3)n

∣∣ = lim
n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞

∣∣2(x− 3)
∣∣.

According to the RaƟo Test, the series convergeswhen
∣∣2(x−3)

∣∣ < 1 =⇒∣∣x− 3
∣∣ < 1/2. The series is centered at 3, and xmust be within 1/2 of 3

in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3− 1/2, 3+ 1/2) = (2.5, 3.5).
We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

∞∑
n=0

2n(2.5− 3)n =
∞∑
n=0

2n(−1/2)n

=
∞∑
n=0

(−1)n,

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

4. We apply the RaƟo Test to
∞∑
n=0

∣∣n!xn∣∣:
lim

n→∞

∣∣(n+ 1)!xn+1
∣∣∣∣n!xn∣∣ = lim

n→∞

∣∣(n+ 1)x
∣∣

= ∞ for all x, except x = 0.

The RaƟo Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0....

We can use a power series to define a funcƟon:

f(x) =
∞∑
n=0

anxn

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such funcƟons; in parƟcular, we
can find derivaƟves and anƟderivaƟves.
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.

.

.
Theorem 75 DerivaƟves and Indefinite Integrals of Power Series
FuncƟons

Let f(x) =
∞∑
n=0

an(x − c)n be a funcƟon defined by a power series, with

radius of convergence R.

1. f(x) is conƟnuous and differenƟable on (c− R, c+ R).

2. f ′(x) =
∞∑
n=1

an · n · (x− c)n−1, with radius of convergence R.

3.
∫

f(x) dx = C+
∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence R.

A few notes about Theorem 75:

1. The theorem states that differenƟaƟon and integraƟon do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. NoƟce how the summaƟon for f ′(x) starts with n = 1. This is because the
constant term a0 of f(x) goes to 0.

3. DifferenƟaƟon and integraƟon are simply calculated term–by–term using
the Power Rules.

.. Example 256 ..DerivaƟves and indefinite integrals of power series

Let f(x) =
∞∑
n=0

xn. Find f ′(x) and F(x) =
∫

f(x) dx, along with their respecƟve

intervals of convergence.

SÊ½çã®ÊÄ We find the derivaƟve and indefinite integral of f(x), follow-
ing Theorem 75.

1. f ′(x) =
∞∑
n=1

nxn−1 = 1+ 2x+ 3x2 + 4x3 + · · · .

In Example 254, we recognized that
∞∑
n=0

xn is a geometric series in x. We

know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (−1, 1).

Notes:
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To determine the interval of convergence of f ′(x), we consider the end-
points of (−1, 1):

f ′(−1) = 1− 2+ 3− 4+ · · · , which diverges.

f ′(1) = 1+ 2+ 3+ 4+ · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F(x) =
∫

f(x) dx = C+
∞∑
n=0

xn+1

n+ 1
= C+ x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence of F(x), we again consider the end-
points of (−1, 1):

F(−1) = C− 1+ 1/2− 1/3+ 1/4+ · · ·

The value of C is irrelevant; noƟce that the rest of the series is an Alter-
naƟng Series that whose terms converge to 0. By the AlternaƟng Series
Test, this series converges. (In fact, we can recognize that the terms of the
series aŌer C are the opposite of the AlternaƟng Harmonic Series. We can
thus say that F(−1) = C− ln 2.)

F(1) = C+ 1+ 1/2+ 1/3+ 1/4+ · · ·

NoƟce that this summaƟon is C + the Harmonic Series, which diverges.
Since F converges for x = −1 and diverges for x = 1, the interval of
convergence of F(x) is [−1, 1)....

The previous example showed how to take the derivaƟve and indefinite in-
tegral of a power series without moƟvaƟon for why we care about such opera-
Ɵons. Wemay care for the sheer mathemaƟcal enjoyment “that we can”, which
is moƟvaƟon enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking derivaƟves and indefinite integrals.

Recall that f(x) =
∞∑
n=0

xn in Example 256 is a geometric series. According to

Theorem 60, this series converges to 1/(1− x) when |x| < 1. Thus we can say

f(x) =
∞∑
n=0

xn =
1

1− x
, on (−1, 1).

IntegraƟng the power series, (as done in Example 256,) we find

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
, (8.4)

Notes:
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8.6 Power Series

while integraƟng the funcƟon f(x) = 1/(1− x) gives

F(x) = − ln |1− x|+ C2. (8.5)

EquaƟng EquaƟons (8.4) and (8.5), we have

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Leƫng x = 0, we have F(0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x|.

We established in Example 256 that the series on the leŌ converges at x = −1;
subsƟtuƟng x = −1 on both sides of the above equality gives

−1+
1
2
− 1

3
+

1
4
− 1

5
+ · · · = − ln 2.

On the leŌ we have the opposite of the AlternaƟng Harmonic Series; on the
right, we have− ln 2. We conclude that

1− 1
2
+

1
3
− 1

4
+ · · · = ln 2.

Important: We stated in Key Idea 31 (in SecƟon 8.2) that the AlternaƟng Har-
monic Series converges to ln 2, and referred to this fact again in Example 251 of
SecƟon 8.5. However, we never gave an argument for why this was the case.
The work above finally shows how we conclude that the AlternaƟng Harmonic
Series converges to ln 2.

We use this type of analysis in the next example.

.. Example 257 ..Analyzing power series funcƟons

Let f(x) =
∞∑
n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze the behav-

ior of f(x).

SÊ½çã®ÊÄ We start by making two notes: first, in Example 255, we
found the interval of convergence of this power series is (−∞,∞). Second,
we will find it useful later to have a few terms of the series wriƩen out:

∞∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · (8.6)

Notes:
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We now find the derivaƟve:

f ′(x) =
∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1+ x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can re-index
the series starƟng with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the derivaƟve of f(x) is f(x). The only funcƟons for which this is true
are of the form y = cex for some constant c. As f(0) = 1 (see EquaƟon (8.6)), c
must be 1. Therefore we conclude that

f(x) =
∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C+

∞∑
n=0

xn+1

n!(n+ 1)

= C+
∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C+
∞∑
n=0

xn+1

(n+ 1)!
= C+ x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicaƟng that
f(x) = ex. ...

Example 257 and the work following Example 256 established relaƟonships
between a power series funcƟon and “regular” funcƟons that we have dealt
with in the past. In general, given a power series funcƟon, it is difficult (if not
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impossible) to express the funcƟon in terms of elementary funcƟons. We chose
examples where things worked out nicely.

In this secƟon’s last example, we show how to solve a simple differenƟal
equaƟon with a power series.

.. Example 258 ..Solving a differenƟal equaƟon with a power series.
Give the first 4 terms of the power series soluƟon to y′ = 2y, where y(0) = 1.

SÊ½çã®ÊÄ The differenƟal equaƟon y′ = 2y describes a funcƟon y =
f(x) where the derivaƟve of y is twice y and y(0) = 1. This is a rather simple
differenƟal equaƟon; with a bit of thought one should realize that if y = Ce2x,
then y′ = 2Ce2x, and hence y′ = 2y. By leƫng C = 1 we saƟsfy the iniƟal
condiƟon of y(0) = 1.

Let’s ignore the fact that we already know the soluƟon and find a power
series funcƟon that saƟsfies the equaƟon. The soluƟon we seek will have the
form

f(x) =
∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 75:

f ′(x) =
∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x2 + 4a4x3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x2 + 4a4x3 · · · = 2
(
a0 + a1x+ a2x2 + a3x3 + · · ·

)
= 2a0 + 2a1x+ 2a2x2 + 2a3x3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The iniƟal condiƟon y(0) = f(0) = 1 indicates that a0 = 1; with this, we can
find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;
a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;
a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series soluƟon to the differenƟal equaƟon
y′ = 2y is

f(x) = 1+ 2x+ 2x2 +
4
3
x3 +

2
3
x4 + · · ·

Notes:
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In SecƟon 8.8, as we study Taylor Series, we will learn how to recognize this se-
ries as describing y = e2x. ...

Our last example illustrates that it can be difficult to recognize an elementary
funcƟon by its power series expansion. It is far easier to start with a known func-
Ɵon, expressed in terms of elementary funcƟons, and represent it as a power
series funcƟon. One may wonder why we would bother doing so, as the laƩer
funcƟon probably seems more complicated. In the next two secƟons, we show
both how to do this and why such a process can be beneficial.

Notes:

444



Exercises 8.6
Terms and Concepts
1. We adopt the convencƟon that x0 = , regardless of

the value of x.
2. What is the difference between the radius of convergence

and the interval of convergence?

3. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=0

(−1)nanxn?

Problems
In Exercises 5 – 8, write out the sum of the first 5 terms of the
given power series.

5.
∞∑
n=0

2nxn

6.
∞∑
n=1

1
n2

xn

7.
∞∑
n=0

1
n!
xn

8.
∞∑
n=0

(−1)n

(2n)!
x2n

In Exercises 9 – 24, a power series is given.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

9.
∞∑
n=0

(−1)n+1

n!
xn

10.
∞∑
n=0

nxn

11.
∞∑
n=1

(−1)n(x− 3)n

n

12.
∞∑
n=0

(x+ 4)n

n!

13.
∞∑
n=0

xn

2n

14.
∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑
n=0

5n(x− 1)n

16.
∞∑
n=0

(−2)nxn

17.
∞∑
n=0

√
nxn

18.
∞∑
n=0

n
3n

xn

19.
∞∑
n=0

3n

n!
(x− 5)n

20.
∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑
n=1

xn

n2

22.
∞∑
n=1

(x+ 2)n

n3

23.
∞∑
n=0

n!
( x
10

)n

24.
∞∑
n=0

n2
(
x+ 4
4

)n

In Exercises 25 – 30, a funcƟon f(x) =
∞∑
n=0

anxn is given.

(a) Give a power series for f ′(x) and its interval of conver-
gence.

(b) Give a power series for
∫
f(x) dx and its interval of con-

vergence.

25.
∞∑
n=0

nxn

26.
∞∑
n=1

xn

n

27.
∞∑
n=0

( x
2

)n

28.
∞∑
n=0

(−3x)n

29.
∞∑
n=0

(−1)nx2n

(2n)!

30.
∞∑
n=0

(−1)nxn

n!

In Exercises 31 – 36, give the first 5 terms of the series that is
a soluƟon to the given differenƟal equaƟon.

31. y ′ = 3y, y(0) = 1

32. y ′ = 5y, y(0) = 5

33. y ′ = y2, y(0) = 1

34. y ′ = y+ 1, y(0) = 1

35. y ′′ = −y, y(0) = 0, y ′(0) = 1

36. y ′′ = 2y, y(0) = 1, y ′(0) = 1
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y = f(x)

.

y = p1(x)

.

−4

.

−2
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. −5.
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x
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y

f(0) = 2 f ′′′(0) = −1
f ′(0) = 1 f (4)(0) = −12
f ′′(0) = 2 f (5)(0) = −19

Figure 8.18: Ploƫng y = f(x) and a table
of derivaƟves of f evaluated at 0.
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y = p2(x)

.

y = p4(x)

.
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Figure 8.19: Ploƫng f, p2 and p4.
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y = p13(x)

.
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Figure 8.20: Ploƫng f and p13.
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8.7 Taylor Polynomials
Consider a funcƟon y = f(x) and a point

(
c, f(c)

)
. The derivaƟve, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).
In Figure 8.18, we see a funcƟon y = f(x) graphed. The table below the

graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at
x = 0 is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approximaƟon is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p2(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure 8.18 gives the following informaƟon:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properƟes. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.

This is simply an iniƟal–value problem. We can solve this using the tech-
niques first described in SecƟon 5.1. To keep p2(x) as simple as possible, we’ll
assume that not only p′′2 (0) = 2, but that p′′2 (x) = 2. That is, the second deriva-
Ɵve of p2 is constant.

If p′′2 (x) = 2, then p′2(x) = 2x + C for some constant C. Since we have
determined that p′2(0) = 1, we find that C = 1 and so p′2(x) = 2x + 1. Finally,
we can compute p2(x) = x2+x+C. Using our iniƟal values, we know p2(0) = 2
so C = 2.We conclude that p2(x) = x2 + x+ 2. This funcƟon is ploƩed with f in
Figure 8.19.

We can repeat this approximaƟon process by creaƟng polynomials of higher
degree that matchmore of the derivaƟves of f at x = 0. In general, a polynomial
of degree n can be created to match the first n derivaƟves of f. Figure 8.19 also
shows p4(x) = −x4/2−x3/6+x2+x+2, whose first four derivaƟves at 0match
those of f. (Using the table in Figure 8.18, start with p(4)4 (x) = −12 and solve
the related iniƟal–value problem.)

As we use more and more derivaƟves, our polynomial approximaƟon to f
gets beƩer and beƩer. In this example, the interval on which the approximaƟon
is “good” gets bigger and bigger. Figure 8.20 shows p13(x); we can visually affirm
that this polynomial approximates f very well on [−2, 3]. (The polynomial p13(x)
is not parƟcularly “nice”. It is

16901x13

6227020800
+

13x12

1209600
−

1321x11

39916800
−

779x10

1814400
−

359x9

362880
+

x8

240
+

139x7

5040
+

11x6

360
−

19x5

120
−

x4

2
−

x3

6
+x2+x+2.)

Notes:
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f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 8.21: The derivaƟves of f(x) = ex

evaluated at x = 0.

8.7 Taylor Polynomials

Thepolynomialswehave created are examples of Taylor polynomials, named
aŌer the BriƟsh mathemaƟcian Brook Taylor who made important discoveries
about such funcƟons. While we created the above Taylor polynomials by solving
iniƟal–value problems, it can be shown that Taylor polynomials follow a general
paƩern that make their formaƟon much more direct. This is described in the
following definiƟon.

.

.

.
DefiniƟon 38 Taylor Polynomial, Maclaurin Polynomial

Let f be a funcƟon whose first n derivaƟves exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c)+f ′(c)(x−c)+
f ′′(c)
2!

(x−c)2+
f ′′′(c)
3!

(x−c)3+· · ·+ f (n)(c)
n!

(x−c)n.

2. A special case of the Taylor polynomial is theMaclaurin polynomial, where c =
0. That is, theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn.

We will pracƟce creaƟng Taylor and Maclaurin polynomials in the following
examples.

.. Example 259 ..Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

SÊ½çã®ÊÄ

1. We start with creaƟng a table of the derivaƟves of ex evaluated at x = 0.
In this parƟcular case, this is relaƟvely simple, as shown in Figure 8.21. By

Notes:
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.....y = p5(x).
−2

.
2

.

5

.

10

.

x

.

y

Figure 8.22: A plot of f(x) = ex and its 5th

degree Maclaurin polynomial p5(x).

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.23: DerivaƟves of ln x evaluated
at x = 1.

Chapter 8 Sequences and Series

the definiƟon of the Maclaurin series, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f n(0)
n!

xn

= 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 + · · ·+ 1
n!
xn.

2. Using our answer from part 1, we have

p5 = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straighƞorward to evaluate p5(1):

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60

≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 8.22....

.. Example 260 ..Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

SÊ½çã®ÊÄ

1. We begin by creaƟng a table of derivaƟves of ln x evaluated at x = 1.
While this is not as straighƞorward as it was in the previous example, a
paƩern does emerge, as shown in Figure 8.23.

Using DefiniƟon 38, we have

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + · · ·+ f n(c)
n!

(x− c)n

= 0+ (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 − 1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x− 1) terms turn out to be “nice.”

Notes:
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y = ln x

.

y = p6(x)

.

1
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Figure 8.24: A plot of y = ln x and its 6th

degree Taylor polynomial at x = 1.
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..

y = ln x

.

y = p20(x)

.
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Figure 8.25: A plot of y = ln x and its 20th

degree Taylor polynomial at x = 1.

8.7 Taylor Polynomials

2. We can compute p6(x) using our work above:

p6(x) = (x−1)− 1
2
(x−1)2+

1
3
(x−1)3− 1

4
(x−1)4+

1
5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3 − 1

4
(1.5− 1)4 + · · ·

· · ·+ 1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

This is a good approximaƟon as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 8.24 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approximaƟon is not terribly impressive: a handheld calculator shows
that ln 2 ≈ 0.693147. The graph in Figure 8.24 shows that p6(x) provides
less accurate approximaƟons of ln x as x gets close to 0 or 2.

Surprisingly enough, even the 20th degree Taylor polynomial fails to ap-
proximate ln x for x > 2, as shown in Figure 8.25. We’ll soon discuss why
this is....

Taylor polynomials are used to approximate funcƟons f(x) in mainly two sit-
uaƟons:

Notes:
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Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric funcƟons, in pracƟce they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.

Chapter 8 Sequences and Series

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the raƟo of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of compuƟng cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of compuƟng
such values using only operaƟons usually hard–wired into a computer (+,
−,× and÷).

2. When f(x) is not known, but informaƟon about its derivaƟves is known.
This occurs more oŌen than one might think, especially in the study of
differenƟal equaƟons.

In both situaƟons, a criƟcal piece of informaƟon to have is “How good is my
approximaƟon?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approximaƟon is?

We had the same problem when studying Numerical IntegraƟon. Theorem
43provided bounds on the errorwhen using, say, Simpson’s Rule to approximate
a definite integral. These bounds allowed us to determine that, for instance,
using 10 subintervals provided an approximaƟonwithin±.01 of the exact value.
The following theorem gives similar bounds for Taylor (and hence Maclaurin)
polynomials.

.

.

.
Theorem 76 Taylor’s Theorem

1. Let f be a funcƟon whose n+ 1th derivaƟve exists on an interval I and let c be in I.
Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 + · · ·+ f (n)(c)
n!

(x− c)n + Rn(x),

where Rn(x) =
f (n+1)(zx)
(n+ 1)!

(x− c)(n+1).

2.
∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣(x− c)(n+1)∣∣

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approximaƟon. The second part gives bounds on how big that error
can be. If the (n+ 1)th derivaƟve is large, the error may be large; if x is far from
c, the error may also be large. However, the (n + 1)! term in the denominator

Notes:
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8.7 Taylor Polynomials

tends to ensure that the error gets smaller as n increases.
The following example computes error esƟmates for the approximaƟons of

ln 1.5 and ln 2 made in Example 260.

.. Example 261 ..Finding error bounds of a Taylor polynomial
Use Theorem 76 to find error bounds when approximaƟng ln 1.5 and ln 2 with
p6(x), the Taylor polynomial of degree 6 of f(x) = ln x at x = 1, as calculated in
Example 260.

SÊ½çã®ÊÄ

1. We start with the approximaƟon of ln 1.5 with p6(1.5). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the beƩer; it will give us a more accurate (and smaller!)
approximaƟon of the error. We let I = (0.9, 1.6), as this interval contains
both c = 1 and x = 1.5.
The theorem references max

∣∣f (n+1)(z)
∣∣. In our situaƟon, this is asking

“How big can the 7th derivaƟve of y = ln x be on the interval (0.9, 1.6)?”
The seventh derivaƟve is y = −6!/x7. The largest value it aƩains on I is
about 1506. Thus we can bound the error as:

∣∣R6(1.5)∣∣ ≤ max
∣∣f (7)(z)∣∣
7!

∣∣(1.5− 1)7
∣∣

≤ 1506
5040

· 1
27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778, which is less than our
bound of 0.0023. This affirms Taylor’s Theorem; the theorem states that
our approximaƟon would be within about 2 thousandths of the actual
value, whereas the approximaƟon was actually closer.

2. We again find an interval I that contains both c = 1 and x = 2; we choose
I = (0.9, 2.1). The maximum value of the seventh derivaƟve of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus ∣∣R6(2)∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(2− 1)7
∣∣

≤ 1506
5040

· 17

≈ 0.30.

Notes:
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.26: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.

Chapter 8 Sequences and Series

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
p6(2) ≈ 0.61667, our error esƟmate guarantees that the actual value of
ln 2 is somewhere between 0.31667 and 0.91667. These bounds are not
parƟcularly useful.

In reality, our approximaƟon was only off by about 0.07. However, we
are approximaƟng ostensibly because we do not know the real answer. In
order to be assured that we have a good approximaƟon, we would have
to resort to using a polynomial of higher degree.

...

We pracƟce again. This Ɵme, we use Taylor’s theorem to find n that guaran-
tees our approximaƟon is within a certain amount.

.. Example 262 ..Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

SÊ½çã®ÊÄ Following Taylor’s theorem, we need bounds on the size of
the derivaƟves of f(x) = cos x. In the case of this trigonometric funcƟon, this is
easy. All derivaƟves of cosine are± sin x or± cos x. In all cases, these funcƟons
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequaliƟes:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣(2− 0)(n+1)∣∣ ≤ 0.001

1
(n+ 1)!

· 2(n+1) ≤ 0.001

We find an n that saƟsfies this last inequality with trial–and–error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <

0.001. Thus we want to approximate cos 2 with p9(2).

We now set out to compute p9(x). We again need a table of the derivaƟves
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 8.26.
NoƟce how the derivaƟves, evaluated at x = 0, follow a certain paƩern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

Since we are forming our polynomial at x = 0, we are creaƟng a Maclaurin

Notes:
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.. f(x) = cos x

Figure 8.27: A graph of f(x) = cos x and
its degree 8 Maclaurin polynomial.

f(x) =
√
x ⇒ f(4) = 2

f ′(x) =
1

2
√
x

⇒ f ′(4) =
1
4

f ′′(x) =
−1
4x3/2

⇒ f ′′(4) =
−1
32

f ′′′(x) =
3

8x5/2
⇒ f ′′′(4) =

3
256

f (4)(x) =
−15
16x7/2

⇒ f (4)(4) =
−15
2048

Figure 8.28: A table of the derivaƟves of
f(x) =

√
x evaluated at x = 4.
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.. y =
√
x.

y = p4(x)
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Figure 8.29: A graph of f(x) =
√
x and its

degree 4 Taylor polynomial at x = 4.

8.7 Taylor Polynomials

polynomial, and :

p8(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (8)

8!
x8

= 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131
315

≈ −0.41587.

Our error bound guarantee that this approximaƟon is within 0.001 of the correct
answer. Technology shows us that our approximaƟon is actually within about
0.0003 of the correct answer.

Figure 8.27 shows a graph of y = p8(x) and y = cos x. Note how well the
two funcƟons agree on about (−π, π). ...

.. Example 263 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximaƟng
√
3 with p4(3).

SÊ½çã®ÊÄ

1. We begin by evaluaƟng the derivaƟves of f at x = 4. This is done in Figure
8.28. These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. To find a bound on the error, we need an open interval that contains x = 3
and x = 4. We set I = (2.9, 4.1). The largest value the fiŌh derivaƟve of
f(x) =

√
x takes on this interval is near x = 2.9, at about 0.0273. Thus∣∣R4(3)∣∣ ≤ 0.0273

5!
∣∣(3− 4)5

∣∣ ≈ 0.00023.

This shows our approximaƟon is accurate to at least the first 2 places aŌer
the decimal. (It turns out that our approximaƟon is actually accurate to
4 places aŌer the decimal.) A graph of f(x) =

√
x and p4(x) is given in

Figure 8.29. Note how the two funcƟons are nearly indisƟnguishable on
(2, 7)...

Notes:
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Chapter 8 Sequences and Series

Our final example gives a brief introducƟon to using Taylor polynomials to
solve differenƟal equaƟons.

.. Example 264 ..ApproximaƟng an unknown funcƟon
A funcƟon y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y′ = y2

(This second fact says that amazingly, the derivaƟve of the funcƟon is actually
the funcƟon squared!)

Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).

SÊ½çã®ÊÄ Onemight iniƟally think that not enough informaƟon is given
to find p3(x). However, note how the second fact above actually lets us know
what y′(0) is:

y′ = y2 ⇒ y′(0) = y2(0).

Since y(0) = 1, we conclude that y′(0) = 1.
Now we find informaƟon about y′′. StarƟng with y′ = y2, take derivaƟves of

both sides, with respect to x. That means we must use implicit differenƟaƟon.

y′ = y2

d
dx
(
y′
)
=

d
dx
(
y2
)

y′′ = 2y · y′.

Now evaluate both sides at x = 0:

y′′(0) = 2y(0) · y′(0)
y′′(0) = 2

We repeat this once more to find y′′′(0). We again use implicit differenƟaƟon;
this Ɵme the Product Rule is also required.

d
dx
(
y′′
)
=

d
dx
(
2yy′

)
y′′′ = 2y′ · y′ + 2y · y′′.

Now evaluate both sides at x = 0:

y′′′(0) = 2y′(0)2 + 2y(0)y′′(0)
y′′′(0) = 2+ 4 = 6

Notes:
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Figure 8.30: A graph of y = −1/(x − 1)
and y = p3(x) from Example 264.

8.7 Taylor Polynomials

In summary, we have:

y(0) = 1 y′(0) = 1 y′′(0) = 2 y′′′(0) = 6.

We can now form p3(x):

p3(x) = 1+ x+
2
2!
x2 +

6
3!
x3

= 1+ x+ x2 + x3.

It turns out that the differenƟal equaƟonwe startedwith, y′ = y2, where y(0) =

1, can be solved without too much difficulty: y =
1

1− x
. Figure 8.30 shows this

funcƟon ploƩed with p3(x). Note how similar they are near x = 0. ...

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate soluƟons to differenƟal equaƟons. This topic is
oŌen broached in introductory DifferenƟal EquaƟons courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximaƟon is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
secƟon has taken a step back from this study, focusing instead on finite summa-
Ɵon of terms. In the next secƟon, we explore Taylor Series, where we represent
a funcƟon with an infinite series.

Notes:
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Exercises 8.7
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Maclaurin polynomial?

2. T/F: In general, pn(x) approximates f(x) beƩer and beƩer
as n gets larger.

3. For some funcƟon f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?

4. For some funcƟon f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is f ′′′(0)?

Problems
In Exercises 5 – 12, find the Maclaurin polynomial of degree
n for the given funcƟon.

5. f(x) = e−x, n = 3

6. f(x) = sin x, n = 8

7. f(x) = x · ex, n = 5

8. f(x) = tan x, n = 6

9. f(x) = e2x, n = 4

10. f(x) =
1

1− x
, n = 4

11. f(x) =
1

1+ x
, n = 4

12. f(x) =
1

1+ x
, n = 7

In Exercises 13 – 20, find the Taylor polynomial of degree n,
at x = c, for the given funcƟon.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1

15. f(x) = cos x, n = 6, c = π/4

16. f(x) = sin x, n = 5, c = π/6

17. f(x) =
1
x
, n = 5, c = 2

18. f(x) =
1
x2
, n = 8, c = 1

19. f(x) =
1

x2 + 1
, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21 – 24, approximate the funcƟon value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.

24. Approximate ln 1.5 with the Taylor polynomial of degree 3
centered at x = 1.

Exercises 25 – 28 ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.

27. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos π/3 within 0.0001 of the ac-
tual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos π within 0.0001 of the actual
value.

In Exercises 29 – 33, find the nth term of the indicated Taylor
polynomial.

29. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the nth term of theMaclaurin polynomial
for f(x) =

1
1− x

.

32. Find a formula for the nth term of theMaclaurin polynomial
for f(x) =

1
1+ x

.

33. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x.

In Exercises 34 – 36, approximate the soluƟon to the given
differenƟal equaƟon with a degree 4 Maclaurin polynomial.

34. y′ = y, y(0) = 1

35. y′ = 5y, y(0) = 3

36. y′ =
2
y
, y(0) = 1
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.31: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.

8.8 Taylor Series

8.8 Taylor Series
In SecƟon 8.6, we showed how certain funcƟons can be represented by a power
series funcƟon. In 8.7, we showed howwe can approximate funcƟons with poly-
nomials, given that enough derivaƟve informaƟon is available. In this secƟonwe
combine these concepts: if a funcƟon f(x) is infinitely differenƟable, we show
how to represent it with a power series funcƟon.

.

.

.
DefiniƟon 39 Taylor and Maclaurin Series

Let f(x) have derivaƟves of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)
n!

(x− c)n.

2. Seƫng c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)
n!

xn.

The difference between a Taylor polynomial and a Taylor series is the former
is a polynomial, containing only a finite number of terms, whereas the laƩer is
a series, a summaƟon of an infinite set of terms. When creaƟng the Taylor poly-
nomial of degree n for a funcƟon f(x) at x = c, we needed to evaluate f, and the
first n derivaƟves of f, at x = c. When creaƟng the Taylor series of f, it helps to
find a paƩern that describes the nth derivaƟve of f at x = c. We demonstrate
this in the next two examples.

.. Example 265 ..The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

SÊ½çã®ÊÄ In Example 262 we found the 8th degree Maclaurin polyno-
mial of cos x. In doing so, we created the table shown in Figure 8.31. NoƟce how
f (n)(0) = 0when n is odd, f (n)(0) = 1when n is divisible by 4, and f (n)(0) = −1
when n is even but not divisible by 4. Thus the Maclaurin series of cos x is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

Notes:
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f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.32: DerivaƟves of ln x evaluated
at x = 1.

Chapter 8 Sequences and Series

We can go further and write this as a summaƟon. Since we only need the terms
where the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

...

.. Example 266 The Taylor series of f(x) = ln x at x = 1
Find the Taylor series of f(x) = ln x centered at x = 1.

SÊ½çã®ÊÄ Figure 8.32 shows the nth derivaƟve of ln x evaluated at x =
1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what disƟnguishes Taylor series from Taylor polynomials;
we are very interested in finding a paƩern for the nth term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = ln 1 = 0, we skip the
first term and start the summaƟon with n = 1, giving the Taylor series for ln x,
centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1
n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

..

It is important to note that DefiniƟon 39 defines a Taylor series given a func-
Ɵon f(x); however, we cannot yet state that f(x) is equal to its Taylor series. We
will find that “most of the Ɵme” they are equal, but we need to consider the
condiƟons that allow us to conclude this.

Theorem 76 states that the error between a funcƟon f(x) and its nth–degree
Taylor polynomial pn(x) is Rn(x), where

∣∣Rn(x)∣∣ ≤ max
∣∣ f (n+1)(z)

∣∣
(n+ 1)!

∣∣(x− c)(n+1)∣∣.
If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we con-

clude that the funcƟon is equal to its Taylor series expansion.

Notes:
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.

.

.
Theorem 77 FuncƟon and Taylor Series Equality

Let f(x) have derivaƟves of all orders at x = c, let Rn(x) be as stated in
Theorem 76, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = 0 for all x in I containing c, then

f(x) =
∞∑
n=0

f (n)(c)
n!

(x− c)n on I.

We demonstrate the use of this theorem in an example.

.. Example 267 Establishing equality of a funcƟon and its Taylor series
Show that f(x) = cos x is equal to its Maclaurin series, as found in Example 265,
for all x.

SÊ½çã®ÊÄ Given a value x, the magnitude of the error term Rn(x) is
bounded by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣x(n+1)∣∣.

Since all derivaƟves of cos x are± sin xor± cos x, whosemagnitudes are bounded
by 1, we can state ∣∣Rn(x)∣∣ ≤ 1

(n+ 1)!
∣∣x(n+1)∣∣.

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Thus by the Squeeze Theorem, we conclude that

lim
n→∞

Rn(x) = 0 for all x, and hence

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
for all x...

It is natural to assume that a funcƟon is equal to its Taylor series on the
series’ interval of convergence, but this is not the case. In order to properly
establish equality, one must use Theorem 77. This is a bit disappoinƟng, as we
developed beauƟful techniques for determining the interval of convergence of
a power series, and proving that Rn(x) → 0 can be cumbersome as it deals with
high order derivaƟves of the funcƟon.

There is good news. A funcƟon f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analyƟc funcƟon, and most, if
not all, funcƟons that we encounter within this course are analyƟc funcƟons.

Notes:
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Generally speaking, any funcƟon that one creates with elementary funcƟons
(polynomials, exponenƟals, trigonometric funcƟons, etc.) that is not piecewise
defined is probably analyƟc. Formost funcƟons, we assume the funcƟon is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
77 when we suspect something may not work as expected.

We develop the Taylor series for one more important funcƟon, then give a
table of the Taylor series for a number of common funcƟons.

.. Example 268 ..The Binomial Series
Find the Maclaurin series of f(x) = (1+ x)k, k ̸= 0.

SÊ½çã®ÊÄ When k is a posiƟve integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f(x) = (1+ x)4 = 1+ 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a posiƟve integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) =
√
1+ x. Knowing a series representaƟon of

this funcƟon would give a useful way of approximaƟng
√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)k for any value of k ̸= 0,
we consider the derivaƟves of f evaluated at x = 0:

f(x) = (1+ x)k f(0) = 1

f ′(x) = k(1+ x)k−1 f ′(0) = k

f ′′(x) = k(k− 1)(1+ x)k−2 f ′′(0) = k(k− 1)

f ′′′(x) = k(k− 1)(k− 2)(1+ x)k−3 f ′′′(0) = k(k− 1)(k− 2)
...

...

f (n)(x) = k(k− 1) · · ·
(
k− (n− 1)

)
(1+ x)k−n f (n)(0) = k(k− 1) · · ·

(
k− (n− 1)

)
Thus the Maclaurin series for f(x) = (1+ x)k is

1+ k+
k(k− 1)

2!
+

k(k− 1)(k− 2)
3!

+ . . .+
k(k− 1) · · ·

(
k− (n− 1)

)
n!

+ . . .

It is important to determine the interval of convergence of this series. With

an =
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn,

Notes:
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we apply the RaƟo Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k− 1) · · · (k− n)
(n+ 1)!

xn+1
∣∣∣∣
/∣∣∣∣∣k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn
∣∣∣∣∣

= lim
n→∞

∣∣∣∣k− n
n

x
∣∣∣∣

= |x|.

The series converges absolutely when the limit of the RaƟo Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1]. When
−1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1, the interval of
convergence is (−1, 1). ...

We learned that Taylor polynomials offer a way of approximaƟng a “difficult
to compute” funcƟon with a polynomial. Taylor series offer a way of exactly
represenƟng a funcƟon with a series. One probably can see the use of a good
approximaƟon; is there any use of represenƟng a funcƟon exactly as a series?

Whilewe should not overlook themathemaƟcal beauty of Taylor series (which
is reason enough to study them), there are pracƟcal uses as well. They provide
a valuable tool for solving a variety of problems, including problems relaƟng to
integraƟon and differenƟal equaƟons.

In Key Idea 32 (on the following page) we give a table of the Taylor series
of a number of common funcƟons. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new funcƟons. This allows us to find the Taylor series of funcƟons like
f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we invesƟgate combining funcƟons, consider the Taylor series for the
arctangent funcƟon (see Key Idea 32). Knowing that tan−1(1) = π/4, we can
use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

π = 4
(
1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

)
Unfortunately, this parƟcular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not parƟcularly good.

Notes:
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.

.

.
Key Idea 32 Important Taylor Series Expansions

FuncƟon and Series First Few Terms Interval of
Convergence

ex =
∞∑
n=0

xn

n!
1+ x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1
1− x

=
∞∑
n=0

xn 1+ x+ x2 + x3 + · · · (−1, 1)

(1+ x)k =
∞∑
n=0

k(k− 1) · · ·
(
k− (n− 1)

)
n!

xn 1+ kx+
k(k− 1)

2!
x2 + · · · (−1, 1)a

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

aConvergence at x = ±1 depends on the value of k.

.

.

.
Theorem 78 Algebra of Power Series

Let f(x) =
∞∑
n=0

anxn and g(x) =
∞∑
n=0

bnxn converge absolutely for |x| < R, and let h(x) be conƟnuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)xn for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anxn
)( ∞∑

n=0

bnxn
)

=
∞∑
n=0

(
a0bn + a1bn−1 + . . . anb0

)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Notes:
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.. Example 269 Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = ex cos x using Key Idea
32 and Theorem 78.

SÊ½çã®ÊÄ Key Idea 32 informs us that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · · and cos x = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 78, we find that

ex cos x =
(
1+ x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the leŌ:

= 1
(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

Distribute again and collect like terms.

= 1+ x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

While this process is a bit tedious, it is much faster than evaluaƟng all the nec-
essary derivaƟves of ex cos x and compuƟng the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x. ..

.. Example 270 ..CreaƟng new Taylor series
Use Theorem 78 to create series for y = sin(x2) and y = ln(

√
x).

SÊ½çã®ÊÄ Given that

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply subsƟtute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .

Notes:
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Chapter 8 Sequences and Series

Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x2).

The Taylor expansion for ln x given in Key Idea 32 is centered at x = 1, so we
will center the series for ln(

√
x) at x = 1 as well. With

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · ,

we subsƟtute
√
x for x to obtain

ln(
√
x) =

∞∑
n=1

(−1)n+1 (
√
x− 1)n

n
= (

√
x−1)− (

√
x− 1)2

2
+

(
√
x− 1)3

3
−· · · .

While this is not strictly a power series, it is a series that allows us to study the
funcƟon ln(

√
x). Since the interval of convergence of ln x is (0, 2], and the range

of
√
x on (0, 4] is (0, 2], the interval of convergence of this series expansion of

ln(
√
x) is (0, 4]. ...

.. Example 271 ..Using Taylor series to evaluate definite integrals

Use the Taylor series of e−x2 to evaluate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ We learned, when studying Numerical IntegraƟon, that e−x2

does not have an anƟderivaƟve expressible in terms of elementary funcƟons.
This means any definite integral of this funcƟon must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e−x2 using the Taylor series of
ex:

ex =
∞∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2 =
∞∑
n=0

(−x2)n

n!

=
∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · ·

Notes:
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We use Theorem 75 to integrate:∫
e−x2 dx = C+ x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)n!
+ · · ·

This is the anƟderivaƟve of e−x2 ; while we can write it out as a series, we can-
not write it out in terms of elementary funcƟons. We can evaluate the definite

integral
∫ 1

0
e−x2 dx using this anƟderivaƟve; subsƟtuƟng 1 and 0 for x and sub-

tracƟng gives ∫ 1

0
e−x2 dx = 1− 1

3
+

1
5 · 2!

− 1
7 · 3!

+
1

9 · 4!
· · · .

Summing the 5 terms shown above give the approximaƟon of 0.74749. Since
this is an alternaƟng series, we can use the AlternaƟng Series ApproximaƟon
Theorem, (Theorem 71), to determine how accurate this approximaƟon is. The
next term of the series is 1/(11 · 5!) ≈ 0.00075758. Thus we know our approxi-
maƟon is within 0.00075758 of the actual value of the integral. This is arguably
much less work than using Simpson’s Rule to approximate the value of the inte-
gral. ...

.. Example 272 Using Taylor series to solve differenƟal equaƟons
Solve the differenƟal equaƟon y′ = 2y in terms of a power series, and use the
theory of Taylor series to recognize the soluƟon in terms of an elementary func-
Ɵon.

SÊ½çã®ÊÄ We found the first 5 terms of the power series soluƟon to
this differenƟal equaƟon in Example 258 in SecƟon 8.6. These are:

a0 = 1, a1 = 2, a2 =
4
2
= 2, a3 =

8
2 · 3

=
4
3
, a4 =

16
2 · 3 · 4

=
2
3
.

We include the “unsimplified” expressions for the coefficients found in Example
258 as we are looking for a paƩern. It can be shown that an = 2n/n!. Thus the
soluƟon, wriƩen as a power series, is

y =
∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 32 and Theorem 78, we recognize f(x) = e2x:

ex =
∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.

..

Notes:
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Finding a paƩern in the coefficients that match the series expansion of a
known funcƟon, such as those shown in Key Idea 32, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we sƟll recover the funcƟon y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4
3
, a4 =

2
3
.

DefiniƟon 39 states that each term of the Taylor expansion of a funcƟon includes
an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4
3
=

b3
3!
, and a4 =

2
3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the paƩern we had previously
seen, allowing us to write

f(x) =
∞∑
n=0

anxn =
∞∑
n=0

bn
n!

xn

= 1+ 2x+
4
2!
x2 +

8
3!
x3 +

16
4!

x4 + · · ·

From here it is easier to recognize that the series is describing an exponenƟal
funcƟon.

There are simpler, more direct ways of solving the differenƟal equaƟon y′ =
2y. We applied power series techniques to this equaƟon to demonstrate its uƟl-
ity, and went on to show how someƟmes we are able to recover the soluƟon in
terms of elementary funcƟons using the theory of Taylor series. Most differen-
Ɵal equaƟons faced in real scienƟfic and engineering situaƟons are much more
complicated than this one, but power series can offer a valuable tool in finding,
or at least approximaƟng, the soluƟon.

Notes:
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Exercises 8.8
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Taylor series?

2. What theoremmustwe use to show that a funcƟon is equal
to its Taylor series?

Problems
Key Idea 32 gives the nth term of the Taylor series of common
funcƟons. In Exercises 3 – 6, verify the formula given in the
Key Idea by finding the first few terms of the Taylor series of
the given funcƟon and idenƟfying a paƩern.

3. f(x) = ex; c = 0

4. f(x) = sin x; c = 0

5. f(x) = 1/(1− x); c = 0

6. f(x) = tan−1 x; c = 0

In Exercises 7 – 12, find a formula for the nth termof the Taylor
series of f(x), centered at c, by finding the coefficients of the
first few powers of x and looking for a paƩern. (The formu-
las for several of these are found in Key Idea 32; show work
verifying these formula.)

7. f(x) = cos x; c = π/2

8. f(x) = 1/x; c = 1

9. f(x) = e−x; c = 0

10. f(x) = ln(1+ x); c = 0

11. f(x) = x/(x+ 1); c = 1

12. f(x) = sin x; c = π/4

In Exercises 13 – 16, show that the Taylor series for f(x), as
given in Key Idea 32, is equal to f(x) by applying Theorem 77;
that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex

14. f(x) = sin x

15. f(x) = ln x

16. f(x) = 1/(1− x) (show equality only on (−1, 0))

In Exercises 17 – 20, use the Taylor series given in Key Idea 32
to verify the given idenƟty.

17. cos(−x) = cos x

18. sin(−x) = − sin x

19. d
dx

(
sin x

)
= cos x

20. d
dx

(
cos x

)
= − sin x

In Exercises 21 – 24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k = 1/2

22. k = −1/2

23. k = 1/3

24. k = 4

In Exercises 25 – 30, use the Taylor series given in Key Idea 32
to create the Taylor series of the given funcƟons.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1 (x/2)
29. f(x) = ex sin x (only find the first 4 terms)

30. f(x) = (1+ x)1/2 cos x (only find the first 4 terms)

In Exercises 31 – 32, approximate the value of the given def-
inite integral by using the first 4 nonzero terms of the inte-
grand’s Taylor series.

31.
∫ √

π

0
sin
(
x2
)
dx

32.
∫ π2/4

0
cos
(√

x
)
dx
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A: SÊ½çã®ÊÄÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ

Chapter 5
SecƟon 5.1

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 1/9x9 + C

11. t+ C

13. −1/(3t) + C

15. 2
√
x+ C

17. − cos θ + C

19. 5eθ + C

21. 5t
2 ln 5 + C

23. t6/6+ t4/4− 3t2 + C

25. eπx+ C

27. (a) x > 0

(b) 1/x

(c) x < 0

(d) 1/x

(e) ln |x|+ C. ExplanaƟons will vary.

29. 5ex + 5

31. tan x+ 4

33. 5/2x2 + 7x+ 3

35. 5ex − 2x

37. 2x4 ln2(2)+2x+x ln 2)(ln 32−1)+ln2(2) cos(x)−1−ln2(2)
ln2(2)

39. No answer provided.

SecƟon 5.2

1. Answers will vary.

3. 0

5. (a) 3

(b) 4

(c) 3

(d) 0

(e) −4

(f) 9

7. (a) 4

(b) 2

(c) 4

(d) 2

(e) 1
(f) 2

9. (a) π

(b) π

(c) 2π
(d) 10π

11. (a) 4/π
(b) −4/π
(c) 0
(d) 2/π

13. (a) 40/3
(b) 26/3
(c) 8/3
(d) 38/3

15. (a) 3Ō/s
(b) 9.5Ō
(c) 9.5Ō

17. (a) 96Ō/s
(b) 6 seconds
(c) 6 seconds
(d) Never; the maximum height is 208Ō.

19. 5

21. Answers can vary; one soluƟon is a = −2, b = 7

23. −7

25. Answers can vary; one soluƟon is a = −11, b = 18

27. − cos x− sin x+ tan x+ C

29. ln |x|+ csc x+ C

SecƟon 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. −1+ 2− 3+ 4− 5+ 6 = 3

11. 1+ 1+ 1+ 1+ 1+ 1 = 6

13. Answers may vary;
∑8

i=0(i
2 − 1)

15. Answers may vary;
∑4

i=0(−1)iei

17. 1045

19. −8525

21. 5050

23. 155

25. 24

27. 19

29. π/3+ π/(2
√
3) ≈ 1.954

A.1



31. 0.388584

33. (a) Exact expressions will vary; (1+n)2

4n2 .

(b) 121/400, 10201/40000, 1002001/4000000

(c) 1/4

35. (a) 8.

(b) 8, 8, 8

(c) 8

37. (a) Exact expressions will vary; 100− 200/n.

(b) 80, 98, 499/5

(c) 100

39. F(x) = 5 tan x+ 4

41. G(t) = 4/6t6 − 5/4t4 + 8t+ 9

43. G(t) = sin t− cos t− 78

SecƟon 5.4

1. Answers will vary.

3. T

5. 20

7. 0

9. 1

11. (5− 1/5)/ ln 5

13. −4

15. 16/3

17. 45/4

19. 1/2

21. 1/2

23. 1/4

25. 8

27. 0

29. ExplanaƟons will vary. A sketch will help.

31. c = ±2/
√
3

33. c = 64/9 ≈ 7.1

35. 2/pi

37. 16/3

39. 1/(e− 1)

41. 400Ō

43. −1Ō

45. −64Ō/s

47. 2Ō/s

49. 27/2

51. 9/2

53. F′(x) = (3x2 + 1) 1
x3+x

55. F′(x) = 2x(x2 + 2)− (x+ 2)

SecƟon 5.5

1. F

3. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

5. (a) 250

(b) 250

(c) 250

7. (a) 2+
√
2+

√
3 ≈ 5.15

(b) 2/3(3+
√
2+ 2

√
3) ≈ 5.25

(c) 16/3 ≈ 5.33

9. (a) 0.2207

(b) 0.2005

(c) 1/5

11. (a) 9/2(1+
√
3) ≈ 12.294

(b) 3+ 6
√
3 ≈ 13.392

(c) 9π/2 ≈ 14.137

13. Trapezoidal Rule: 3.0241
Simpson’s Rule: 2.9315

15. Trapezoidal Rule: 3.0695
Simpson’s Rule: 3.14295

17. Trapezoidal Rule: 2.52971
Simpson’s Rule: 2.5447

19. Trapezoidal Rule: 3.5472
Simpson’s Rule: 3.6133

21. (a) n = 150 (using max
(
f ′′(x)

)
= 1)

(b) n = 18 (using max
(
f (4)(x)

)
= 7)

23. (a) n = 5591 (using max
(
f ′′(x)

)
= 300)

(b) n = 46 (using max
(
f (4)(x)

)
= 24)

25. (a) Area is 25.0667 cm2

(b) Area is 250,667 yd2

Chapter 6
SecƟon 6.1

1. Chain Rule.

3. 1
8 (x

3 − 5)8 + C

5. 1
18

(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C

13. − 1
2x2 − 1

x + C

15. sin3(x)
3 + C

17. − tan(4− x) + C

19. tan3(x)
3 + C

21. tan(x)− x+ C

23. ex
3

3 + C

25. x− e−x + C

27. 27x
ln 27 + C

29. 1
2 ln

2(x) + C

31. 1
6 ln

2 (x3)+ C

A.2



33. x2
2 + 3x+ ln |x|) + C

35. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

37. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

39.
√
7 tan−1

(
x√
7

)
+ C

41. 14 sin−1
(

x√
5

)
+ C

43. 5
4 sec

−1(|x|/4) + C

45.
tan−1

(
x−1√

7

)
√

7
+ C

47. −3 sin−1 ( 4−x
5

)
+ C

49. − 1
3(x3+3)

+ C

51. −
√
1− x2 + C

53. − 2
3 cos

3
2 (x) + C

55. 7
3 ln |3x+ 2|+ C

57. ln
∣∣x2 + 7x+ 3

∣∣+ C

59. − x2
2 + 2 ln

∣∣x2 − 7x+ 1
∣∣+ 7x+ C

61. tan−1(2x) + C

63. 1
3 sin

−1 ( 3x
4

)
+ C

65. 19
5 tan−1 ( x+6

5

)
− ln

∣∣x2 + 12x+ 61
∣∣+ C

67. x2
2 − 9

2 ln
∣∣x2 + 9

∣∣+ C

69. − tan−1(cos(x)) + C

71. ln | sec x+ tan x|+ C (integrand simplifies to sec x)

73.
√
x2 − 6x+ 8+ C

75. 352/15

77. 1/5

79. π/2

81. π/6

SecƟon 6.2

1. T

3. Determining which funcƟons in the integrand to set equal to “u”
and which to set equal to “dv”.

5. −e−x − xe−x + C

7. −x3 cos x+ 3x2 sin x+ 6x cos x− 6 sin x+ C

9. x3ex − 3x2ex + 6xex − 6ex + C

11. 1/2ex(sin x− cos x) + C

13. 1/13e2x(2 sin(3x)− 3 cos(3x)) + C

15. −1/2 cos2 x+ C

17. x tan−1(2x)− 1
4 ln
∣∣4x2 + 1

∣∣+ C

19.
√
1− x2 + x sin−1 x+ C

21. − x2
4 + 1

2 x
2 ln |x|+ 2x− 2x ln |x|+ C

23. 1
2 x

2 ln
(
x2
)
− x2

2 + C

25. 2x+ x (ln |x|)2 − 2x ln |x|+ C

27. x tan(x) + ln | cos(x)|+ C

29. 2
5 (x− 2)5/2 + 4

3 (x− 2)3/2 + C

31. sec x+ C

33. −x csc x− ln | csc x+ cot x|+ C

35. 2 sin
(√

x
)
− 2

√
x cos

(√
x
)
+ C

37. 2
√
xe

√
x − 2e

√
x + C

39. π

41. 0

43. 1/2

45. 3
4e2 − 5

4e4

47. 1/5
(
eπ + e−π

)
SecƟon 6.3

1. F

3. F

5. 1
4 sin

4(x) + C

7. 1
6 cos

6 x− 1
4 cos

4 x+ C

9. − 1
9 sin

9(x) + 3 sin7(x)
7 − 3 sin5(x)

5 +
sin3(x)

3 + C

11. 1
2

(
− 1

8 cos(8x)−
1
2 cos(2x)

)
+ C

13. 1
2

( 1
4 sin(4x)−

1
10 sin(10x)

)
+ C

15. 1
2

(
sin(x) + 1

3 sin(3x)
)
+ C

17. tan5(x)
5 + C

19. tan6(x)
6 +

tan4(x)
4 + C

21. sec5(x)
5 − sec3(x)

3 + C

23. 1
3 tan

3 x− tan x+ x+ C

25. 1
2 (sec x tan x− ln | sec x+ tan x|) + C

27. 2
5

29. 32/315

31. 2/3

33. 16/15

SecƟon 6.4

1. backwards

3. (a) tan2 θ + 1 = sec2 θ

(b) 9 sec2 θ.

5. 1
2

(
x
√
x2 + 1+ ln |

√
x2 + 1+ x|

)
+ C

7. 1
2

(
sin−1 x+ x

√
1− x2

)
+ C

9. 1
2 x
√
x2 − 1− 1

2 ln |x+
√
x2 − 1|+ C

11. x
√

x2 + 1/4+ 1
4 ln |2

√
x2 + 1/4+ 2x|+ C =

1
2 x
√
4x2 + 1+ 1

4 ln |
√
4x2 + 1+ 2x|+ C

13. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln |4x+ 4

√
x2 − 1/16|

)
+ C =

1
2 x
√
16x2 − 1− 1

8 ln |4x+
√
16x2 − 1|+ C

15. 3 sin−1
(

x√
7

)
+ C (Trig. Subst. is not needed)

17.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

19.
√
x2 − 3+ C (Trig. Subst. is not needed)
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21. − 1√
x2+9

+ C (Trig. Subst. is not needed)

23. 1
18

x+2
x2+4x+13 + 1

54 tan
−1 ( x+2

2

)
+ C

25. 1
7

(
−
√

5−x2
x − sin−1(x/

√
5)
)

+ C

27. π/2

29. 2
√
2+ 2 ln(1+

√
2)

31. 9 sin−1(1/3) +
√
8 Note: the new lower bound is

θ = sin−1(−1/3) and the new upper bound is θ = sin−1(1/3).
The final answer comes with recognizing that
sin−1(−1/3) = − sin−1(1/3) and that
cos
(
sin−1(1/3)

)
= cos

(
sin−1(−1/3)

)
=

√
8/3.

SecƟon 6.5

1. raƟonal

3. A
x + B

x−3

5. A
x−

√
7
+ B

x+
√

7

7. 3 ln |x− 2|+ 4 ln |x+ 5|+ C

9. 1
3 (ln |x+ 2| − ln |x− 2|) + C

11. − 4
x+8 − 3 ln |x+ 8|+ C

13. − ln |2x− 3|+ 5 ln |x− 1|+ 2 ln |x+ 3|+ C

15. x+ ln |x− 1| − ln |x+ 2|+ C

17. 2x+ C

19. − 3
2 ln
∣∣x2 + 4x+ 10

∣∣+ x+
tan −1

(
x+2√

6

)
√

6
+ C

21. 2 ln |x− 3|+ 2 ln |x2 + 6x+ 10| − 4 tan−1(x+ 3) + C

23. 1
2

(
3 ln
∣∣x2 + 2x+ 17

∣∣− 4 ln |x− 7|+ tan −1 ( x+1
4

))
+ C

25. 1
2 ln
∣∣x2 + 10x+ 27

∣∣+ 5 ln |x+ 2| − 6
√
2 tan −1

(
x+5√

2

)
+ C

27. 5 ln(9/4)− 1
3 ln(17/2) ≈ 3.3413

29. 1/8

SecƟon 6.6

1. Because cosh x is always posiƟve.

3. coth2 x− csch2 x =
(
ex + e−x

ex − e−x

)2

−
(

2
ex − e−x

)2

=
(e2x + 2+ e−2x)− (4)

e2x − 2+ e−2x

=
e2x − 2+ e−2x

e2x − 2+ e−2x

= 1

5. cosh2 x =
(
ex + e−x

2

)2

=
e2x + 2+ e−2x

4

=
1
2
(e2x + e−2x) + 2

2

=
1
2

(
e2x + e−2x

2
+ 1
)

=
cosh 2x+ 1

2
.

7.
d
dx

[sech x] =
d
dx

[
2

ex + e−x

]
=

−2(ex − e−x)

(ex + e−x)2

= −
2(ex − e−x)

(ex + e−x)(ex + e−x)

= −
2

ex + e−x ·
ex − e−x

ex + e−x

= − sech x tanh x

9.
∫

tanh x dx =
∫

sinh x
cosh x

dx

Let u = cosh x; du = (sinh x)dx

=

∫
1
u
du

= ln |u|+ C
= ln(cosh x) + C.

11. 2 sinh 2x

13. coth x

15. x cosh x

17. 3√
9x2+1

19. 1
1−(x+5)2

21. sec x

23. y = 3/4(x− ln 2) + 5/4

25. y = x

27. 1/2 ln(cosh(2x)) + C

29. 1/2 sinh2 x+ C or 1/2 cosh2 x+ C

31. x cosh(x)− sinh(x) + C

33. cosh−1(x2/2) + C = ln(x2 +
√
x4 − 4) + C

35. 1
16 tan

−1(x/2) + 1
32 ln |x− 2|+ 1

32 ln |x+ 2|+ C

37. tan−1(ex) + C

39. x tanh−1 x+ 1/2 ln |x2 − 1|+ C

41. 0

43. 2

SecƟon 6.7

1. 0/0,∞/∞, 0 · ∞,∞−∞, 00, 1∞,∞0

3. F

5. derivaƟves; limits

7. Answers will vary.

9. −5/3

11. −
√
2/2

13. 0

15. a/b

17. 1/2

19. 0

21. ∞
23. 0

25. −2

27. 0

29. 0
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31. ∞

33. ∞

35. 0

37. 1

39. 1

41. 1

43. 1

45. 1

47. 2

49. −∞

51. 0

SecƟon 6.8

1. The interval of integraƟon is finite, and the integrand is
conƟnuous on that interval.

3. converges; could also state< 10.

5. p > 1

7. e5/2

9. 1/3

11. 1/ ln 2

13. diverges

15. 1

17. diverges

19. diverges

21. diverges

23. 1

25. 0

27. −1/4

29. −1

31. diverges

33. 1/2

35. converges; Limit Comparison Test with 1/x3/2.

37. converges; Direct Comparison Test with xe−x.

39. converges; Direct Comparison Test with xe−x.

41. diverges; Direct Comparison Test with x/(x2 + cos x).

43. converges; Limit Comparison Test with 1/ex.

Chapter 7
SecƟon 7.1

1. T

3. Answers will vary.

5. 16/3

7. π

9. 2
√
2

11. 4.5

13. 2− π/2

15. 1/6

17. On regions such as [π/6, 5π/6], the area is 3
√
3/2. On regions

such as [−π/2, π/6], the area is 3
√
3/4.

19. 5/3

21. 9/4

23. 1

25. 4

27. 219,000 Ō2

SecƟon 7.2

1. T

3. Recall that “dx” does not just “sit there;” it is mulƟplied by A(x)
and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

5. 175π/3 units3

7. π/6 units3

9. 35π/3 units3

11. 2π/15 units3

13. (a) 512π/15

(b) 256π/5

(c) 832π/15

(d) 128π/3

15. (a) 104π/15

(b) 64π/15

(c) 32π/5

17. (a) 8π

(b) 8π

(c) 16π/3

(d) 8π/3

19. The cross–secƟons of this cone are the same as the cone in
Exercise 18. Thus they have the same volume of 250π/3 units3.

21. Orient the solid so that the x-axis is parallel to long side of the
base. All cross–secƟons are trapezoids (at the far leŌ, the
trapezoid is a square; at the far right, the trapezoid has a top
length of 0, making it a triangle). The area of the trapezoid at x is
A(x) = 1/2(−1/2x+ 5+ 5)(5) = −5/4x+ 25. The volume is
187.5 units3.

SecƟon 7.3

1. T

3. F

5. 9π/2 units3

7. π2 − 2π units3

9. 48π
√
3/5 units3

11. π2/4 units3

13. (a) 4π/5

(b) 8π/15

(c) π/2

(d) 5π/6

15. (a) 4π/3

(b) π/3

(c) 4π/3
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(d) 2π/3

17. (a) 2π(
√
2− 1)

(b) 2π(1−
√
2+ sinh−1(1))

SecƟon 7.4

1. T

3.
√
2

5. 4/3

7. 109/2

9. 12/5

11. − ln(2−
√
3) ≈ 1.31696

13.
∫ 1
0

√
1+ 4x2 dx

15.
∫ 1
0

√
1+ 1

4x dx

17.
∫ 1
−1

√
1+ x2

1−x2 dx

19.
∫ 2
1

√
1+ 1

x4 dx

21. 1.4790

23. Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x2; why?

25. Simpson’s Rule fails.

27. 1.4058

29. 2π
∫ 1
0 2x

√
5 dx = 2π

√
5

31. 2π
∫ 1
0 x3

√
1+ 9x4 dx = π/27(10

√
10− 1)

33. 2π
∫ 1
0

√
1− x2

√
1+ x/(1− x2) dx = 4π

SecƟon 7.5

1. In SI units, it is one joule, i.e., one Newton–meter, or kg·m/s2·m.
In Imperial Units, it is Ō–lb.

3. Smaller.

5. (a) 2450 j

(b) 1568 j

7. 735 j

9. 11,100 Ō–lb

11. 125 Ō–lb

13. 12.5 Ō–lb

15. 7/20 j

17. 45 Ō–lb

19. 953, 284 j

21. 192,767 Ō–lb. Note that the tank is oriented horizontally. Let the
origin be the center of one of the circular ends of the tank. Since
the radius is 3.75 Ō, the fluid is being pumped to y = 4.75; thus
the distance the gas travels is h(y) = 4.75− y. A differenƟal
element of water is a rectangle, with length 20 and width
2
√

3.752 − y2. Thus the force required to move that slab of gas is
F(y) = 40 · 45.93 ·

√
3.752 − y2dy. Total work is∫ 3.75

−3.75 40 · 45.93 · (4.75− y)
√

3.752 − y2 dy. This can be
evaluated without actual integraƟon; split the integral into∫ 3.75
−3.75 40 · 45.93 · (4.75)

√
3.752 − y2 dy+

∫ 3.75
−3.75 40 · 45.93 ·

(−y)
√

3.752 − y2 dy. The first integral can be evaluated as
measuring half the area of a circle; the laƩer integral can be
shown to be 0 without much difficulty. (Use subsƟtuƟon and
realize the bounds are both 0.)

23. (a) approx. 577,000 j

(b) approx. 399,000 j

(c) approx 110,000 j (By volume, half of the water is between
the base of the cone and a height of 3.9685 m. If one
rounds this to 4 m, the work is approx 104,000 j.)

25. 617,400 j

SecƟon 7.6

1. Answers will vary.

3. 499.2 lb

5. 6739.2 lb

7. 3920.7 lb

9. 2496 lb

11. 602.59 lb

13. (a) 2340 lb

(b) 5625 lb

15. (a) 1597.44 lb

(b) 3840 lb

17. (a) 56.42 lb

(b) 135.62 lb

19. 5.1 Ō

Chapter 8
SecƟon 8.1

1. Answers will vary.

3. Answers will vary.

5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45

7. 1
3 , 2,

81
5 , 512

3 , 15625
7

9. an = 3n+ 1

11. an = 10 · 2n−1

13. 1/7

15. 0

17. diverges

19. converges to 0

21. diverges

23. converges to e

25. converges to 0

27. converges to 2

29. bounded

31. bounded

33. neither bounded above or below

35. monotonically increasing

37. never monotonic

39. Let {an} be given such that lim
n→∞

|an| = 0. By the definiƟon of
the limit of a sequence, given any ε > 0, there is am such that for
all n > m, | |an| − 0| < ε. Since | |an| − 0| = |an − 0|, this
directly implies that for all n > m, |an − 0| < ε, meaning that
lim

n→∞
an = 0.
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41. LeŌ to reader

SecƟon 8.2

1. Answers will vary.

3. One sequence is the sequence of terms {a}. The other is the
sequence of nth parƟal sums, {Sn} = {

∑n
i=1 ai}.

5. F

7. (a) 1, 5
4 ,

49
36 ,

205
144 ,

5269
3600

(b) Plot omiƩed

9. (a) 1, 3, 6, 10, 15

(b) Plot omiƩed

11. (a) 1
3 ,

4
9 ,

13
27 ,

40
81 ,

121
243

(b) Plot omiƩed

13. (a) 0.1, 0.11, 0.111, 0.1111, 0.11111

(b) Plot omiƩed

15. lim
n→∞

an = ∞; by Theorem 63 the series diverges.

17. lim
n→∞

an = 1; by Theorem 63 the series diverges.

19. lim
n→∞

an = e; by Theorem 63 the series diverges.

21. Converges

23. Converges

25. Converges

27. Converges

29. Diverges

31. (a) Sn =
(

n(n+1)
2

)2
(b) Diverges

33. (a) Sn = 5 1−1/2n

1/2

(b) Converges to 10.

35. (a) Sn =
1−(−1/3)n

4/3

(b) Converges to 3/4.

37. (a) With parƟal fracƟons, an = 3
2

(
1
n − 1

n+2

)
. Thus

Sn = 3
2

(
3
2 − 1

n+1 − 1
n+2

)
.

(b) Converges to 9/4

39. (a) Sn = ln
(
1/(n+ 1)

)
(b) Diverges (to−∞).

41. (a) an = 1
n(n+3) ; using parƟal fracƟons, the resulƟng

telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 + 1
3 − 1

n+1 − 1
n+2 − 1

n+3

)
(b) Converges to 11/18.

43. (a) With parƟal fracƟons, an = 1
2

(
1

n−1 − 1
n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n − 1
n+1

)
.

(b) Converges to 3/4.

45. (a) The nth parƟal sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th parƟal sum of the even

series is 1
2 + 1

4 + 1
6 + · · ·+ 1

2n . Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth parƟal sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th parƟal sum of 1 plus the

even series is 1+ 1
2 + 1

4 + · · ·+ 1
2(n−1) . Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
parƟal sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

SecƟon 8.3

1. conƟnuous, posiƟve and decreasing

3. The Integral Test (we do not have a conƟnuous definiƟon of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its derivaƟve).

5. Converges

7. Diverges

9. Converges

11. Converges

13. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 + 3n− 5) ≤ 1/n2 for

all n > 1.

15. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 2.

17. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

19. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
·
1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

.

25. Diverges; compare to
∞∑
n=1

ln n
n

.

27. Diverges; compare to
∞∑
n=1

1
n
.

A.7



29. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

31. Converges; compare to
∞∑
n=1

1
n3/2

.

33. Converges; Integral Test

35. Diverges; the nth Term Test and Direct Comparison Test can be
used.

37. Converges; the Direct Comparison Test can be used with sequence
1/3n.

39. Diverges; the nth Term Test can be used, along with the Integral
Test.

41. (a) Converges; use Direct Comparison Test as an
n < n.

(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.

(d) May converge; certainly nan > an but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nth Term Test.

SecƟon 8.4

1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The RaƟo Test is inconclusive; the p-Series Test states it diverges.

11. Converges

13. Converges; note the summaƟon can be rewriƩen as
∞∑
n=1

2nn!
3nn!

,

from which the RaƟo Test can be applied.

15. Converges

17. Converges

19. Diverges

21. Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach e2, not
0, as n → ∞.)

23. Converges

25. Diverges; Limit Comparison Test

27. Converges; RaƟo Test or Limit Comparison Test with 1/3n.

29. Diverges; nth-Term Test or Limit Comparison Test with 1.

31. Diverges; Direct Comparison Test with 1/n

33. Converges; Root Test

SecƟon 8.5

1. The signs of the terms do not alternate; in the given series, some
terms are negaƟve and the others posiƟve, but they do not
necessarily alternate.

3. Many examples exist; one common example is an = (−1)n/n.

5. (a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

9. (a) converges

(b) diverges (Limit Comparison Test with 1/n)
(c) condiƟonal

11. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)

(b) diverges

(c) n/a; diverges

15. (a) converges

(b) converges (Geometric Series with r = 2/3)

(c) absolute

17. (a) converges

(b) converges (RaƟo Test)

(c) absolute

19. (a) converges

(b) diverges (p-Series Test with p = 1/2)

(c) condiƟonal

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of π/4. (Convergence is actually faster, as the sum is within
ε of π/24 when n ≥ 249.)

SecƟon 8.6

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞
(b) (−∞,∞)

11. (a) R = 1

(b) (2, 4]

13. (a) R = 2

(b) (−2, 2)

15. (a) R = 1/5

(b) (4/5, 6/5)

17. (a) R = 1

(b) (−1, 1)

19. (a) R = ∞
(b) (−∞,∞)
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21. (a) R = 1

(b) [−1, 1]

23. (a) R = 0

(b) x = 0

25. (a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+
∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

27. (a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+

∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

29. (a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

31. 1+ 3x+ 9
2 x

2 + 9
2 x

3 + 27
8 x4

33. 1+ x+ x2 + x3 + x4

35. 0+ x+ 0x2 − 1
6 x

3 + 0x4

SecƟon 8.7

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

3 − 1
6 x

3

7. p8(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third derivaƟve of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth derivaƟve of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.

27. The nth derivaƟve of f(x) = cos x is bounded by 1 on intervals
containing 0 and π/3. Thus |Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1).

When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is xn.

33. The nth term is (−1)n (x−1)n

n .

35. 3+ 15x+
75
2
x2 +

375
6

x3 +
1875
24

x4

SecƟon 8.8

1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summaƟon of an infinite
number of terms.

3. All derivaƟves of ex are ex which evaluate to 1 at x = 0.

The Taylor series starts 1+ x+ 1
2 x

2 + 1
3! x

3 + 1
4! x

4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth derivaƟve of 1/(1− x) is f (n)(x) = (n)!/(1− x)n+1,
which evaluates to n! at x = 0.

The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x− π/2) + 0x2 + 1

6 (x− π/2)3 + 0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd and
f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n
xn

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) = (−1)n+1 n!

2n+1

The Taylor series starts
1
2 + 1

4 (x− 1)− 1
8 (x− 1)2 + 1

16 (x− 1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣x(n+1)∣∣,
where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0, then
x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x value, let
M = max{ex, 1}; f (n)(z) < M. This allows us to state

∣∣Rn(x)∣∣ ≤ M
(n+ 1)!

∣∣x(n+1)∣∣.
For any x, lim

n→∞

M
(n+ 1)!

∣∣x(n+1)∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.
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15. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣(x− 1)(n+1)∣∣,
where z is between 1 and x.
Note that

∣∣f (n+1)(x)
∣∣ = n!

xn+1 .
We consider the cases when x > 1 and when x < 1 separately.
If x > 1, then 1 < z < x and f (n+1)(z) = n!

zn+1 < n!. Thus

∣∣Rn(x)∣∣ ≤ n!
(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = (x− 1)n+1

n+ 1
.

For a fixed x,

lim
n→∞

(x− 1)n+1

n+ 1
= 0.

If 0 < x < 1, then x < z < 1 and f (n+1)(z) = n!
zn+1 < n!

xn+1 .
Thus∣∣Rn(x)∣∣ ≤ n!/xn+1

(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = xn+1

n+ 1
(1− x)n+1.

Since 0 < x < 1, xn+1 < 1 and (1− x)n+1 < 1. We can then
extend the inequality from above to state

∣∣Rn(x)∣∣ ≤ xn+1

n+ 1
(1− x)n+1 <

1
n+ 1

.

As n → ∞, 1/(n+ 1) → 0. Thus by the Squeeze Theorem, we
conclude that lim

n→∞
Rn(x) = 0 for all x, and hence

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
for all 0 < x ≤ 2.

17. Given cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
,

cos(−x) =
∞∑
n=0

(−1)n
(−x)2n

(2n)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x, as all

powers in the series are even.

19. Given sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

d
dx
(
sin x

)
=

d
dx

( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)
=

∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x. (The

summaƟon sƟll starts at n = 0 as there was no constant term in
the expansion of sin x).

21. 1+
x
2
−

x2

8
+

x3

16
−

5x4

128

23. 1+
x
3
−

x2

9
+

5x3

81
−

10x4

243

25.
∞∑
n=0

(−1)n
(x2)2n

(2n)!
=

∞∑
n=0

(−1)n
x4n

(2n)!
.

27.
∞∑
n=0

(−1)n
(2x+ 3)2n+1

(2n+ 1)!
.

29. x+ x2 +
x3

3
−

x5

30

31.
∫ √

π

0
sin
(
x2
)
dx ≈

∫ √
π

0

(
x2 −

x6

6
+

x10

120
−

x14

5040

)
dx =

0.8877

A.10



Index

!, 383
Absolute Convergence Theorem, 431
absolute maximum, 121
absolute minimum, 121
Absolute Value Theorem, 387
acceleraƟon, 71, 618
AlternaƟng Harmonic Series, 403, 428, 441
AlternaƟng Series Test

for series, 425
aN, 636, 646
analyƟc funcƟon, 459
angle of elevaƟon, 623
anƟderivaƟve, 185
arc length, 357, 499, 523, 615, 640
arc length parameter, 640, 642
asymptote

horizontal, 46
verƟcal, 44

aT, 636, 646
average rate of change, 603
average value of a funcƟon, 743
average value of funcƟon, 229

Binomial Series, 460
BisecƟon Method, 39
boundary point, 658
bounded sequence, 389

convergence, 390
bounded set, 658

center of mass, 757–759, 761, 788
Chain Rule, 94

mulƟvariable, 689, 691
notaƟon, 100

circle of curvature, 645
closed, 658
closed disk, 658
concave down, 142
concave up, 142
concavity, 142, 496

inflecƟon point, 143
test for, 143

conic secƟons, 469
degenerate, 469
ellipse, 473
hyperbola, 476
parabola, 470

Constant MulƟple Rule
of derivaƟves, 78
of integraƟon, 189
of series, 403

constrained opƟmizaƟon, 720
conƟnuous funcƟon, 34, 664

properƟes, 37, 665
vector–valued, 606

contour lines, 653
convergence

absolute, 429, 431
AlternaƟng Series Test, 425
condiƟonal, 429
Direct Comparison Test, 413

for integraƟon, 327
Integral Test, 410
interval of, 436
Limit Comparison Test, 414

for integraƟon, 329
nth–term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of monotonic sequences, 393
of p-series, 399
of power series, 435
of sequence, 385, 390
of series, 395
radius of, 436
RaƟo Comparison Test, 419
Root Comparison Test, 422

criƟcal number, 123
criƟcal point, 123, 715–717
cross product

and derivaƟves, 611
applicaƟons, 574

area of parallelogram, 575
torque, 577
volume of parallelepiped, 576

definiƟon, 570
properƟes, 572, 573

curvature, 642
and moƟon, 646
equaƟons for, 644
of circle, 644, 645
radius of, 645

curve
parametrically defined, 483
rectangular equaƟon, 483
smooth, 489

curve sketching, 149
cusp, 489
cycloid, 601
cylinder, 532

decreasing funcƟon, 134

A.33



finding intervals, 135
strictly, 134

definite integral, 196
and subsƟtuƟon, 262
properƟes, 197

derivaƟve
acceleraƟon, 72
as a funcƟon, 62
at a point, 58
basic rules, 76
Chain Rule, 94, 100, 689, 691
Constant MulƟple Rule, 78
Constant Rule, 76
differenƟal, 179
direcƟonal, 696, 698, 699, 702
exponenƟal funcƟons, 100
First Deriv. Test, 137
Generalized Power Rule, 95
higher order, 79

interpretaƟon, 80
hyperbolic funct., 306
implicit, 103, 693
interpretaƟon, 69
inverse funcƟon, 114
inverse hyper., 309
inverse trig., 117
Mean Value Theorem, 130
mixed parƟal, 672
moƟon, 72
mulƟvariable differenƟability, 681, 686
normal line, 59
notaƟon, 62, 79
parametric equaƟons, 493
parƟal, 668, 676
Power Rule, 76, 89, 108
power series, 439
Product Rule, 83
QuoƟent Rule, 86
Second Deriv. Test, 146
Sum/Difference Rule, 78
tangent line, 58
trigonometric funcƟons, 87
vector–valued funcƟons, 607, 608, 611
velocity, 72

differenƟable, 58, 681, 686
differenƟal, 179

notaƟon, 179
Direct Comparison Test

for integraƟon, 327
for series, 413

direcƟonal derivaƟve, 696, 698, 699, 702
directrix, 470, 532
Disk Method, 342
displacement, 223, 602, 615
distance

between lines, 587
between point and line, 587
between point and plane, 595
between points in space, 530
traveled, 626

divergence
AlternaƟng Series Test, 425
Direct Comparison Test, 413

for integraƟon, 327
Integral Test, 410
Limit Comparison Test, 414

for integraƟon, 329
nth–term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of p-series, 399
of sequence, 385
of series, 395
RaƟo Comparison Test, 419
Root Comparison Test, 422

dot product
and derivaƟves, 611
definiƟon, 557
properƟes, 558, 559

double integral, 736, 737
in polar, 747
properƟes, 740

eccentricity, 475, 479
elementary funcƟon, 233
ellipse

definiƟon, 473
eccentricity, 475
parametric equaƟons, 489
reflecƟve property, 476
standard equaƟon, 474

extrema
absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
finding, 124
relaƟve, 122, 715, 716

Extreme Value Theorem, 122, 720
extreme values, 121

factorial, 383
First DerivaƟve Test, 137
fluid pressure/force, 375, 377
focus, 470, 473, 476
Fubini’s Theorem, 737
funcƟon

of three variables, 655
of two variables, 651
vector–valued, 599

Fundamental Theorem of Calculus, 221, 222
and Chain Rule, 225

Gabriel’s Horn, 363
Generalized Power Rule, 95
geometric series, 397, 398
gradient, 698, 699, 702, 712

and level curves, 699
and level surfaces, 712

Harmonic Series, 403
Head To Tail Rule, 547



Hooke’s Law, 368
hyperbola

definiƟon, 476
eccentricity, 479
parametric equaƟons, 489
reflecƟve property, 479
standard equaƟon, 477

hyperbolic funcƟon
definiƟon, 303
derivaƟves, 306
idenƟƟes, 306
integrals, 306
inverse, 307

derivaƟve, 309
integraƟon, 309
logarithmic def., 308

implicit differenƟaƟon, 103, 693
improper integraƟon, 322, 325
increasing funcƟon, 134

finding intervals, 135
strictly, 134

indefinite integral, 185
indeterminate form, 2, 45, 316, 317
inflecƟon point, 143
iniƟal point, 543
iniƟal value problem, 190
Integral Test, 410
integraƟon

arc length, 357
area, 196, 728, 729
area between curves, 226, 334
average value, 229
by parts, 266
by subsƟtuƟon, 249
definite, 196

and subsƟtuƟon, 262
properƟes, 197
Riemann Sums, 217

displacement, 223
distance traveled, 626
double, 736
fluid force, 375, 377
Fun. Thm. of Calc., 221, 222
general applicaƟon technique, 333
hyperbolic funct., 306
improper, 322, 325, 327, 329
indefinite, 185
inverse hyper., 309
iterated, 727
Mean Value Theorem, 227
mulƟple, 727
notaƟon, 186, 196, 222, 727
numerical, 233

LeŌ/Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240, 241
Trapezoidal Rule, 236, 240, 241

of mulƟvariable funcƟons, 725
of power series, 439
of trig. funcƟons, 255

of trig. powers, 276, 281
of vector–valued funcƟons, 613
parƟal fracƟon decomp., 296
Power Rule, 190
Sum/Difference Rule, 190
surface area, 361, 501, 524
trig. subst., 287
triple, 774, 785, 787
volume

cross-secƟonal area, 341
Disk Method, 342
Shell Method, 349, 353
Washer Method, 344, 353

work, 365
interior point, 658
Intermediate Value Theorem, 39
interval of convergence, 436
iterated integraƟon, 727, 736, 737, 774, 785, 787

changing order, 731
properƟes, 740, 781

L’Hôpital’s Rule, 313, 315
lamina, 753
LeŌ Hand Rule, 204, 209, 212, 233
LeŌ/Right Hand Rule, 240
level curves, 653, 699
level surface, 656, 712
limit

Absolute Value Theorem, 387
at infinity, 46
definiƟon, 10
difference quoƟent, 6
does not exist, 4, 29
indeterminate form, 2, 45, 316, 317
L’Hôpital’s Rule, 313, 315
leŌ handed, 27
of infinity, 43
of mulƟvariable funcƟon, 659, 660, 666
of sequence, 385
of vector–valued funcƟons, 605
one sided, 27
properƟes, 16, 660
pseudo-definiƟon, 2
right handed, 27
Squeeze Theorem, 20

Limit Comparison Test
for integraƟon, 329
for series, 414

lines, 580
distances between, 587
equaƟons for, 582
intersecƟng, 583
parallel, 583
skew, 583

logarithmic differenƟaƟon, 110

Maclaurin Polynomial, see Taylor Polynomial
definiƟon, 447

Maclaurin Series, see Taylor Series
definiƟon, 457



magnitude of vector, 543
mass, 753, 754, 788

center of, 757
maximum

absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
relaƟve/local, 122, 715, 718

Mean Value Theorem
of differenƟaƟon, 130
of integraƟon, 227

Midpoint Rule, 204, 209, 212
minimum

absolute, 121, 715
and First Deriv. Test, 137, 146
relaƟve/local, 122, 715, 718

moment, 759, 761, 788
monotonic sequence, 390
mulƟple integraƟon, see iterated integraƟon
mulƟvariable funcƟon, 651, 655

conƟnuity, 664–666, 682, 687
differenƟability, 681, 682, 686, 687
domain, 651, 655
level curves, 653
level surface, 656
limit, 659, 660, 666
range, 651, 655

Newton’s Method, 158
norm, 543
normal line, 59, 493, 708
normal vector, 590
nth–term test, 406
numerical integraƟon, 233

LeŌ/Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240

error bounds, 241
Trapezoidal Rule, 236, 240

error bounds, 241

open, 658
open ball, 666
open disk, 658
opƟmizaƟon, 171

constrained, 720
orthogonal, 561, 708

decomposiƟon, 565
orthogonal decomposiƟon of vectors, 565
orthogonal projecƟon, 563
osculaƟng circle, 645

p-series, 399
parabola

definiƟon, 470
general equaƟon, 471
reflecƟve property, 473

parallel vectors, 551
Parallelogram Law, 547
parametric equaƟons

arc length, 499
concavity, 496

definiƟon, 483
finding d2y

dx2 , 497
finding dy

dx , 493
normal line, 493
surface area, 501
tangent line, 493

parƟal derivaƟve, 668, 676
high order, 676
meaning, 670
mixed, 672
second derivaƟve, 672
total differenƟal, 680, 686

perpendicular, see orthogonal
planes

coordinate plane, 531
distance between point and plane, 595
equaƟons of, 591
introducƟon, 531
normal vector, 590
tangent, 711

point of inflecƟon, 143
polar

coordinates, 503
funcƟon

arc length, 523
gallery of graphs, 510
surface area, 524

funcƟons, 506
area, 519
area between curves, 521
finding dy

dx , 516
graphing, 506

polar coordinates, 503
ploƫng points, 503

Power Rule
differenƟaƟon, 76, 83, 89, 108
integraƟon, 190

power series, 434
algebra of, 462
convergence, 435
derivaƟves and integrals, 439

projecƟle moƟon, 623, 624, 637

quadric surface
definiƟon, 535
ellipsoid, 538
ellipƟc cone, 537
ellipƟc paraboloid, 537
gallery, 537–539
hyperbolic paraboloid, 539
hyperboloid of one sheet, 538
hyperboloid of two sheets, 539
sphere, 538
trace, 536

QuoƟent Rule, 86

R, 543
radius of convergence, 436
radius of curvature, 645
RaƟo Comparison Test



for series, 419
rearrangements of series, 430, 431
related rates, 164
Riemann Sum, 204, 208, 211

and definite integral, 217
Right Hand Rule, 204, 209, 212, 233
right hand rule

of Cartesian coordinates, 529
Rolle’s Theorem, 130
Root Comparison Test

for series, 422

saddle point, 717, 718
Second DerivaƟve Test, 146, 718
sensiƟvity analysis, 685
sequence

Absolute Value Theorem, 387
posiƟve, 413

sequences
boundedness, 389
convergent, 385, 390, 393
definiƟon, 383
divergent, 385
limit, 385
limit properƟes, 388
monotonic, 390

series
absolute convergence, 429
Absolute Convergence Theorem, 431
alternaƟng, 424

ApproximaƟon Theorem, 427
AlternaƟng Series Test, 425
Binomial, 460
condiƟonal convergence, 429
convergent, 395
definiƟon, 395
Direct Comparison Test, 413
divergent, 395
geometric, 397, 398
Integral Test, 410
interval of convergence, 436
Limit Comparison Test, 414
Maclaurin, 457
nth–term test, 406
p-series, 399
parƟal sums, 395
power, 434, 435

derivaƟves and integrals, 439
properƟes, 403
radius of convergence, 436
RaƟo Comparison Test, 419
rearrangements, 430, 431
Root Comparison Test, 422
Taylor, 457
telescoping, 400, 401

Shell Method, 349, 353
signed area, 196
signed volume, 736, 737
Simpson’s Rule, 238, 240

error bounds, 241

smooth, 610
smooth curve, 489
speed, 618
sphere, 530
Squeeze Theorem, 20
Sum/Difference Rule

of derivaƟves, 78
of integraƟon, 190
of series, 403

summaƟon
notaƟon, 205
properƟes, 207

surface area, 766
solid of revoluƟon, 361, 501, 524

surface of revoluƟon, 534, 535

tangent line, 58, 493, 516, 609
direcƟonal, 705

tangent plane, 711
Taylor Polynomial

definiƟon, 447
Taylor’s Theorem, 450

Taylor Series
common series, 462
definiƟon, 457
equality with generaƟng funcƟon, 459

Taylor’s Theorem, 450
telescoping series, 400, 401
terminal point, 543
total differenƟal, 680, 686

sensiƟvity analysis, 685
total signed area, 196
trace, 536
Trapezoidal Rule, 236, 240

error bounds, 241
triple integral, 774, 785, 787

properƟes, 781

unbounded sequence, 389
unbounded set, 658
unit normal vector

aN, 636
and acceleraƟon, 635, 636
and curvature, 646
definiƟon, 633
in R2, 635

unit tangent vector
and acceleraƟon, 635, 636
and curvature, 642, 646
aT, 636
definiƟon, 631
in R2, 635

unit vector, 549
properƟes, 551
standard unit vector, 553
unit normal vector, 633
unit tangent vector, 631

vector–valued funcƟon
algebra of, 600
arc length, 615



average rate of change, 603
conƟnuity, 606
definiƟon, 599
derivaƟves, 607, 608, 611
describing moƟon, 618
displacement, 602
distance traveled, 626
graphing, 599
integraƟon, 613
limits, 605
of constant length, 613, 622, 623, 632
projecƟle moƟon, 623, 624
smooth, 610
tangent line, 609

vectors, 543
algebra of, 546
algebraic properƟes, 549
component form, 544
cross product, 570, 572, 573
definiƟon, 543
dot product, 557–559
Head To Tail Rule, 547
magnitude, 543
norm, 543
normal vector, 590
orthogonal, 561
orthogonal decomposiƟon, 565
orthogonal projecƟon, 563
parallel, 551
Parallelogram Law, 547
resultant, 547
standard unit vector, 553
unit vector, 549, 551
zero vector, 547

velocity, 71, 618
volume, 736, 737, 772

Washer Method, 344, 353
work, 365, 567



DifferenƟaƟon Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

IntegraƟon Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫

1
x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

21.
∫

1
x2 + a2

dx =
1
a
tan−1

(
x
a

)
+ C

22.
∫

1
√
a2 − x2

dx = sin−1
(
x
a

)
+ C

23.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫

1
√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

29.
∫

1
√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

30.
∫

1
a2 − x2

dx =
1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫

1
x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫

1
x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

.. x.

y

.

(x, y)

.

y

.
x

.

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

..
Adjacent

.

O
pposite

.

Hy
po
ten

use

. θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes

Pythagorean IdenƟƟes

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

CofuncƟon IdenƟƟes

sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas

sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
cos
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd IdenƟƟes

sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

..
b

. θ.

a

.

c

.

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr
√
r2 + h2 + πr2 ..

h

. r

Parallelograms

Area = bh

..
b

.
h

Right Circular Cylinder

Volume = πr2h

Surface Area =
2πrh+ 2πr2 ..

h
.

r

Trapezoids

Area = 1
2 (a+ b)h

..
b

.

a

.
h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
.. r

Circles

Area = πr2

Circumference = 2πr .. r

General Cone

Area of Base = A

Volume = 1
3Ah ..

h

.
A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ ..
r

.

s

. θ

General Right Cylinder

Area of Base = A

Volume = Ah

..

h

. A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

QuadraƟc Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

RaƟonal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

ArithmeƟc OperaƟons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas

SummaƟon Formulas:
n∑

i=1

c = cn
n∑

i=1

i =
n(n+ 1)

2
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of RevoluƟon:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
conƟnuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

RaƟo Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posiƟve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posiƟve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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